Abstract

The sweeping jet (SJ) film cooling hole has shown promising cooling performance compared to the standard shaped hole in low-speed conditions. The present work demonstrates the first attempt of SJ film cooling at an engine relevant Mach number. An experimental investigation was conducted to study the SJ film cooling on a nozzle guide vane suction surface. A well-established additive manufacturing technique commonly known as stereolithography (SLA) was utilized to design a transonic, engine representative vane geometry in which a row of SJ holes was used on the vane suction surface. Experiments were performed in a linear transonic cascade at an exit Mach number of 0.8 and blowing ratios of BR = 0.25–2.23. The measurement of heat transfer was conducted with the transient IR method, and the convective heat transfer coefficient (HTC) and adiabatic film cooling effectiveness were estimated using a dual linear regression technique (DLRT). Aerodynamic loss measurements were also performed with a total pressure Kiel probe at 0.25Cax downstream of the exit plane of the vane cascade. Experiments were also conducted for a baseline-shaped hole (777-hole) for a direct comparison. Results showed that the SJ hole has a wider coolant spreading in the lateral direction near the hole exit due to its sweeping motion that improves the overall cooling performance particularly at high blowing ratios (BR > 1). Aerodynamic loss measurement suggested that the SJ hole has a comparable total pressure loss to the 777-shaped hole.

References

References
1.
Bunker
,
R. S.
,
2010
, “
Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
Heat Transf. Res.
,
41
(
6
), pp.
627
650
. 10.1615/HeatTransRes.v41.i6.40
2.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
. 10.1115/1.2841752
3.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
. 10.1016/0017-9310(74)90007-6
4.
Dorrington
,
J. R.
,
Bogard
,
D. G.
, and
Bunker
,
R. S.
,
2007
, “
Film Effectiveness Performance for Coolant Holes Imbedded in Various Shallow Trench and Crater Depressions
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
,
May
, pp.
749
758
.
5.
Sivasegaram
,
S.
, and
Whitelaw
,
J. H.
,
1969
, “
Film Cooling Slots: The Importance of Lip Thickness and Injection Angle
,”
J. Mech. Eng. Sci.
,
11
(
1
), pp.
22
27
. 10.1243/JMES_JOUR_1969_011_005_02
6.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometric Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
. 10.1115/1.4006290
7.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
437
443
. 10.1115/1.2927678
8.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
A.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
. 10.1115/1.1515336
9.
Ames
,
F. E.
,
1997
, “
The Influence of Large Scale High Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
. 10.1115/1.2841007
10.
Heneka
,
C.
,
Schulz
,
A.
,
Bauer
,
H.
,
Heselhaus
,
A.
, and
Crawford
,
M. E.
,
2012
, “
Film Cooling Performance of Sharp Edged Diffuser Holes With Lateral Inclination
,”
ASME J. Turbomach.
,
134
(
4
), p.
041015
. 10.1115/1.4003726
11.
Lu
,
Y.
,
Faucheaux
,
D.
, and
Ekkad
,
S. V.
,
2005
, “
Film Cooling Measurements for Novel Hole Configurations
,”
ASME 2005 Summer Heat Transfer Conference
,
San Francisco, CA
,
July
,
Paper No. HT2005-72396
.
12.
Heidmann
,
J. D.
, and
Ekkad
,
S. V.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
. 10.1115/1.2777194
13.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June
,
Paper No. GT2014-25992
.
14.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Thermal Field Measurements for a Shaped Hole at Low and High Freestream Turbulence Intensity
,”
ASME J. Turbomach.
,
139
(
2
), p.
021012
. 10.1115/1.4034798
15.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2016
, “
The Time-Resolved Flow Field of a Jet Emitted by a Fluidic Oscillator Into a Crossflow
,”
54th AIAA Aerospace Sciences Meeting
,
San Diego, CA
,
January
,
Paper No. AIAA 2016-0345
.
16.
Sieber
,
M.
,
Ostermann
,
F.
,
Woszidlo
,
R.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2016
, “
Lagrangian Coherent Structure in the Flow Field of a Fluidic Oscillator
,”
Phys. Rev. Fluids
,
1
(
5
), p.
050509
. 10.1103/PhysRevFluids.1.050509
17.
Thurman
,
D.
,
Poinsatte
,
P.
,
Ameri
,
A.
,
Culley
,
D.
,
Raghu
,
S.
, and
Shyam
,
V.
,
2016
, “
Investigation of Spiral and Sweeping Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091007
. 10.1115/1.4032839
18.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R. K.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2017
, “
Experimental and Numerical Investigation of Sweeping Jet Film Cooling
,”
ASME J. Turbomach.
,
140
(
3
), p.
031009
. 10.1115/1.4038690
19.
Hossain
,
M. A.
,
Agricola
,
L.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Sweeping Jet Film Cooling on a Turbine Vane
,”
ASME J. Turbomach.
,
141
(
3
), p.
031007
. 10.1115/gt2018-77099
20.
Luzeng
,
Z.
, and
Hee
,
K. M.
,
2007
, “
Turbine Blade Film Cooling Study—The Effects of Film Hole Location on the Pressure Side
,”
ASME Turbo Expo 2007
,
Montreal, Canada
,
May
,
Paper No. GT2007-27546
.
21.
Xue
,
S.
,
Ng
,
W. F.
,
Ekkad
,
S.
,
Moon
,
H. K.
, and
Zhang
,
L. Z.
,
2012
, “
The Performance of Fan-Shaped Hole Film Cooling on a Gas Turbine Blade at Transonic Condition With High Freestream Turbulence
,”
50th AIAA Aerospace Sciences Meeting
,
Nashville, TN
,
January
,
Paper No. AIAA 2012-368
.
22.
Carullo
,
J. S.
,
Nasir
,
S.
,
Cress
,
R. D.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2010
, “
The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
133
(
1
), p.
011030
. 10.1115/1.4001366
23.
Baines
,
W. D.
, and
Peterson
,
E. G.
,
1951
, “
An Investigation of Flow Through Screens
,”
Trans. ASME
,
73
(
1
), pp.
467
480
.
24.
El-Gabry
,
L. A.
,
Thurman
,
D. R.
, and
Poinsatte
,
P. E.
,
2014
, “
Procedure for Determining Turbulence Length Scales Using Hotwire Anemometry
,”
NASA Technical Report
.
NASA/TM-2014-218403
.
25.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R. K.
,
Agricola
,
L. M.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J. P.
,
2017
, “
Effect of Roughness on the Performance of Fluidic Oscillator
,”
55th AIAA Aerospace Sciences Meeting
,
TX
,
January
,
Paper No. AIAA 2017-0770
.
26.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
. 10.1115/1.4029098
27.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
,
Crawford
,
M. E.
, and
Abraham
,
S.
,
2017
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in the Presence of Leakage Flow Through Upstream Slot and Mateface Gap With Endwall Contouring
,”
ASME J. Turbomach.
,
139
(
12
), p.
121006
. 10.1115/1.4037909
28.
Liu
,
C.
,
Zhu
,
H.
,
Fu
,
Z.
, and
Xu
,
R.
,
2015
, “
The Effects of Inlet Reynolds Number, Exit Mach Number and Incidence Angle on Leading Edge Film Cooling Effectiveness of a Turbine Blade in a Linear Transonic Cascade
,”
ASME Turbo Expo 2015
,
Montreal, Quebec, Canada
,
June
,
Paper No. GT2015-42888
.
29.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat Transfer Measurements in Short Duration Hypersonic Facilities
,”
Advisory Group for Aerospace Research and Development, North Atlantic Treaty Organization
,
Brussels, Belgium
,
Report No. AGARD-AG-165
.
30.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
461
471
. 10.1115/1.1459736
31.
Moffat
,
R. J.
,
1988
, “
Describing Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
32.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
John Wiley & Sons
,
New York
, Ch. 3.
33.
Xue
,
S.
,
2012
, “
Fan-Shaped Hole Film Cooling on Turbine Blade and Vane in a Transonic Cascade With High Freestream Turbulence
,”
Ph.D. thesis
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
34.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2018
, “
Effects of Coolant Feed Direction on Additively Manufactured Film Cooling Holes
,”
ASME J. Turbomach.
,
140
(
11
), p.
111001
. 10.1115/1.4041374
You do not currently have access to this content.