Abstract

In this article, we propose to use spherical microlasers that can be attached to the surface of bones for in vivo strain monitoring applications. The sensing element is made of mixing polymers, namely, PEGDA-700 (Sigma Aldrich, St. Louis, MO) and Thiocure TMPMP (Evan Chemetics, Teaneck, NJ) at 4:1 ratio in volume doped with rhodamine 6G (Sigma Aldrich, St. Louis, MO) laser dye. Solid-state microlasers are fabricated by curing droplets from the liquid mixture using ultraviolet (UV) light. The sensing principle relies on morphology-dependent resonances; any changes in the strain of the bone causes a shift of the optical resonances, which can be monitored. The specimen is made of a simulated cortical bone fabricated with photopolymer resin via an additive manufacturing process. The light path within the resonator is found to be about perpendicular to the normal stress' direction caused by a bending moment. Therefore, the sensor measures the strain due to bending indirectly using the Poisson effect. Two experiments are conducted: 1) negative bone deflection (called loading) and 2) positive bone deflection (called unloading) for a strain range from 0 to 2.35 × 10−3 m/m. Sensitivity values are ∼19.489 and 19.660 nm/ε for loading and unloading experiments, respectively (percentage difference is less than 1%). In addition, the resolution of the sensor is 1 × 10−3ε (m/m) and the maximum range is 11.58 × 10−3ε (m/m). The quality factor of the microlaser is maintaining about constant (order of magnitude 104) during the experiments. This sensor can be used when bone location accessibility is problematic.

References

References
1.
Yang
,
P. F.
,
Brüggenmann
,
G. P.
, and
Rittweger
,
J.
,
2011
, “
What Do we Currently Know From In Vivo Bone Strain Measurements in Humans?
,”
J. Musculoskelt Neuronal Interact
,
11
(
1
), pp.
8
20
.https://pubmed.ncbi.nlm.nih.gov/21364270/
2.
D'Lima
,
D. D.
,
Fregly
,
B. J.
, and
Colwell
,
C. W.
,
2014
, “
Implantable Sensor Technology: Measuring Bone Joint Biomechanics of Daily Life In Vivo
,”
Arthritis Res. Ther.
,
15
(
1
), p.
203
.10.1186/ar4138
3.
Miclau
,
T.
,
Lu
,
C.
,
Thompson
,
Z.
,
Choi
,
P.
,
Puttlitz
,
C.
,
Marcucio
,
R.
, and
Helms
,
J. A.
,
2007
, “
Effects of Delayed Stabilizationon Fracture Healing
,”
J. Orthopedic Res.
,
25
(
12
), pp.
1552
1558
.10.1002/jor.20435
4.
Shifani
,
S. A.
,
Nanammal
,
V.
,
Bhavani
,
R.
, and
Nishidha
,
A. A.
,
2017
, “
Review on Strain Measurement in Bone Mechanics Using Various Techniques
,”
Proceedings of 2017 IEEE International Conference on Computational Intelligence and Computing Research
(
ICCIC
), Coimbatore, India, Dec. 14–16.10.1109/ICCIC.2017.8524236
5.
McGilvray
,
K. C.
,
Unal
,
E.
,
Troyer
,
K. L.
,
Santoni
,
B. G.
,
Palmer
,
R. H.
,
Easley
,
J. T.
,
Demir
,
H. V.
, and
Puttlitz
,
C. M.
,
2015
, “
Implantable Microelectromechanical Sensors for Diagnostic Monitoring and Post-Surgical Prediction of Bone Fracture Healing
,”
J. Orthopedic Res.
,
33
(
10
), pp.
1439
1446
.10.1002/jor.22918
6.
Schmidhammer
,
R.
,
Zandieh
,
S.
,
Hopf
,
R.
,
Mizner
,
I.
,
Pelinka
,
L. E.
,
Kroepfl
,
A.
, and
Redl
,
H.
,
2004
, “
Alleviated Tension at the Repair Site Enhances Functional Regeneration: The Effect of Full Range of Motion Mobilization on the Regeneration of Peripheral Nerves—Histologic, Electrophysiologic, and Functional Results in a Rat Model
,”
J. Trauma Acute Care Surg.
,
56
(
3
), pp.
571
584
.10.1097/01.TA.0000114082.19295.E6
7.
Grasa
,
J.
,
Gómez-Benito
,
M. J.
,
González-Torres
,
L. A.
,
Asiaín
,
D.
,
Quero
,
F.
, and
García-Aznar
,
J. M.
,
2010
, “
Monitoring In Vivo Load Transmission Through an External Fixator
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
605
612
.10.1007/s10439-009-9889-5
8.
Stoffel
,
K.
,
Klaue
,
K.
, and
Perren
,
S. M.
,
2000
, “
Functional Load of Plates in Fracture Fixation In Vivo and Its Correlate in Bone Healing
,”
Injury
,
31
(Suppl. 2), pp.
B37
B50
.10.1016/s0020-1383(00)80042-x
9.
Pelham
,
H.
,
Benza
,
D.
,
Millhouse
,
P. W.
,
Carrington
,
N.
,
Arifuzzaman
,
M.
,
Behrend
,
C. J.
,
Anker
,
J. N.
, and
DesJardins
,
J. D.
,
2017
, “
Implantable Strain Sensor to Monitor Fracture Healing With Standard Radiography
,”
Sci. Rep.
,
7
(
1
), p. 1489.10.1038/s41598-017-01009-7
10.
Roriz
,
P.
, and
Ribeiro
,
A. B. L.
,
2018
, “
10 - Fiber Optical Sensors in Biomechanics
,”
Opto-Mechanical Fiber Optic Sensors
,
Butterworth-Heinemann
, Oxford, UK, pp.
263
300
.
11.
Go
,
S. A.
,
Jensen
,
E. R.
,
O'Connor
,
S. M.
,
Evertz
,
L. Q.
,
Morrow
,
D. A.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Kaufman
,
K. R.
,
2017
, “
Design Considerations of a Fiber Optic Pressure Sensor Protective Housing for Intramuscular Pressure Measurements
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
739
746
.10.1007/s10439-016-1703-6
12.
Ramos
,
A.
,
Schiller
,
M. W.
,
Abe
,
I.
,
Lopes
,
P. A.
, and
Simoes
,
J. A.
,
2012
, “
Experimental Measurement and Numerical Validation of Bone Cement Mantle Strains of an In Vitro Hip Replacement Using Optical FBG Sensors
,”
Exp. Mech.
,
52
(
9
), pp.
1267
1274
.10.1007/s11340-012-9596-2
13.
Kam
,
W.
,
O'Sullivan
,
K.
,
O'Keeffe
,
M.
,
O'Keeffe
,
S.
,
Mohammed
,
W. S.
, and
Lewis
,
E.
,
2017
, “
Low Cost Portable 3-D Printed Optical Fiber Sensor for Real-Time Monitoring of Lower Back Bending
,”
Sens. Actuators A: Phys.
,
265
, pp.
193
201
.10.1016/j.sna.2017.08.044
14.
Manzo
,
M.
,
Ioppolo
,
T.
,
LaPenna
,
V.
,
Ayaz
,
U.
, and
Otugen
,
M. V.
,
2012
, “
A Photonic Wall Pressure Sensor for Fluid Mechanics Applications
,”
Rev. Sci. Instrum.
,
83
(
10
), p.
105003
.10.1063/1.4757569
15.
Manzo
,
M.
, and
Schwend
,
R.
,
2019
, “
A Novel Microlaser-Based Plasmonic-Polymer Hybrid Resonator for Multiplexed Biosensing Applications
,”
ASME J. Med. Diagn.
,
2
(
2
), p.
021006
.10.1115/1.4042377
16.
Manzo
,
M.
, and
Cavazos
,
O.
,
2019
, “
Neurotransducers Based Voltage Sensitive Dye-Doped Microlasers
,”
Proceedings in Biophotonics Congress: Optics in the Life Sciences Congress 2019
, Tucson, AZ, Apr. 15–17.10.1364/BODA.2019.JT4A.14
17.
Chen
,
R.
,
Ta
,
V. D.
, and
Sun
,
H.
,
2014
, “
Bending-Induced Bidirectional Tuning of Whispering Gallery Mode Lasing From Flexible Polymers
,”
ACS Photon.
,
1
(
1
), pp.
11
16
.10.1021/ph400084s
18.
Wu
,
C.-W.
,
Chen
,
C.-T.
, and
Chiang
,
C.-C.
,
2019
, “
A Novel U-Shaped, Packaged, and Microchanneled Optical Fiber Strain Sensor Based on Macro-Bending Induced Whispering Gallery Mode
,”
Sens. Actuators A: Phys.
,
288
, pp.
86
91
.10.1016/j.sna.2019.01.026
19.
Himmelhaus
,
M.
, and
Francois
,
A.
,
2009
, “
In-Vitro Sensing of Biomechanical Forces in Live Cells by a Whispering Gallery Mode Biosensor
,”
Biosens. Bioelectron.
,
25
(
2
), pp.
418
427
.10.1016/j.bios.2009.07.021
20.
Zhao
,
L.
,
Wang
,
Y.
,
Yuan
,
Y.
,
Liu
,
Y.
,
Liu
,
S.
,
Sun
,
W.
,
Yang
,
J.
, and
Li
,
H.
,
2017
, “
Whispering Gallery Mode Laser Based on Cholesteric Liquid Crystal Microdroplets as Temperature Sensor
,”
Opt. Commun.
,
402
, pp.
181
185
.10.1016/j.optcom.2017.06.008
21.
Fan
,
H.
,
Gu
,
X.
,
Zhou
,
D.
,
Fan
,
H.
,
Fan
,
L.
, and
Xia
,
C.
,
2019
, “
Confined Whispering-Gallery Mode in Silica Double-Toroid Microcavities for Optical Sensing and Trapping
,”
Opt. Commun.
,
434
, pp.
97
103
.10.1016/j.optcom.2018.10.055
22.
Kozlov
,
D. A.
,
Kozlova
,
E. S.
, and
Kotlyar
,
V. V.
,
2017
, “
Influence of Whispering Gallery Modes on Light Focusing by Dielectric Circular Cylinder
,”
Opt. Mem. Neural Networks
,
26
(
4
), pp.
280
288
.10.3103/S1060992X17040038
23.
Manzo
,
M.
,
2017
, “
Temperature Compensation of Dye Doped Polymeric Microscale
,”
J. Polym. Sci.: Part B Polym. Phys.
,
55
(
10
), pp.
789
792
.10.1002/polb.24321
24.
Xiao
,
Y.-F.
,
Dong
,
C.-H.
,
Zou
,
C.-L.
,
Han
,
Z.-F.
,
Yang
,
L.
, and
Guo
,
G.-C.
,
2009
, “
Low-Threshold Microlaser in a high-Q Asymmetrical Microcavity
,”
Opt. Lett.
,
34
(
4
), pp.
509
511
.10.1364/OL.34.000509
25.
Ioppolo
,
T.
, and
Manzo
,
M.
,
2014
, “
Dome Shaped Micro-Laser Encapsulated in a Flexible Film
,”
Laser Phys.
,
24
(
11
), p.
115803
.10.1088/1054-660X/24/11/115803
26.
Robles-Linares
,
J. A.
,
Ramírez-Cedillo
,
E.
,
Siller
,
H. R.
,
Rodríguez
,
C. A.
, and
Martínez-López
,
J. I.
,
2019
, “
Parametric Modeling of Biomimetic Cortical Bone Microstructure for Additive Manufacturing
,”
Mater. (Basel)
,
12
(
6
), p.
913
.10.3390/ma12060913
27.
Manzo
,
M.
, and
Cavazos
,
O.
,
2020
, “
Solid State Optical Microlasers Fabrication Via Microfluidic Channels
,”
Optics
,
1
(
1
), pp.
88
96
.10.3390/opt1010007
28.
Manzo
,
M.
, and
Ioppolo
,
T.
,
2015
, “
Untethered Photonic Sensor for Wall Pressure Measurement
,”
Opt. Lett.
,
40
(
10
), pp.
2257
2260
.10.1364/OL.40.002257
29.
Manzo
,
M.
, and
Cavazos
,
O.
,
2017
, “
A Wireless Photonic Intraocular Pressure Sensor
,”
ASME
Paper No. IMECE2017-70740.10.1115/IMECE2017-70740
You do not currently have access to this content.