Abstract

The heat transfer intensification of a confined impinging jet was achieved using a rough surface or pin fins as well as using modified nozzles such as chamfering, chevron, sweeping, swirling, etc. In this work, an enhanced cooling process utilizing a single confined air jet impinged on a flat plate using a guiding baffle is implemented. The impacts of Reynolds number (Re) ranged from 500 to 5000, guiding baffle diameter-to-nozzle diameter (D/d) of 2, 4, and 6, and guiding baffle height-to-nozzle to impinging plate distance (h/H) of 1/3, 1/2, and 3/4 on the cooling process are studied. The distributions of surface temperature are acquired experimentally using a thermal infrared camera. As well, the local Nusselt number (Nu), stagnation point Nusselt number (Nust), average Nusselt number (Nu¯), and average Nusselt number ratio (Nu¯r) are evaluated. The results reveal that the enhancement of heat transfer is achieved due to installing a guiding baffle with a D/d of 2 for all values of baffle height and Reynolds number. In addition, the Nu¯r is increased with increasing the Re in the range from 500 to 2500, then it is decreased by a further increase in Re. Moreover, based on the experimental results, an empirical correlation is proposed to compute the Nu¯ depending on Re, D/d, and h/H with a ±2.65% standard deviation.

References

1.
Goel
,
A. K.
, and
Singh
,
S. N.
,
2020
, “
Experimental Study of Heat Transfer Characteristics of an Impinging Jet Solar Air Heater With Fins
,”
Environ. Dev. Sustain.
,
22
(
4
), pp.
3641
3653
.10.1007/s10668-019-00360-1
2.
Maghrabie
,
H. M.
,
Attalla
,
M.
,
Fawaz
,
H. E.
, and
Khalil
,
M.
,
2017
, “
Numerical Investigation of Heat Transfer and Pressure Drop of In-Line Array of Heated Obstacles Cooled by Jet Impingement in Cross-Flow
,”
Alexandria Eng. J.
,
56
(
3
), pp.
285
296
.10.1016/j.aej.2016.12.022
3.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
4.
Maghrabie
,
H. M.
,
2021
, “
Heat Transfer Intensification of Jet Impingement Using Exciting Jets—A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
139
, p.
110684
.10.1016/j.rser.2020.110684
5.
Zhang
,
F. F.
,
Chen
,
G.
,
Yuan
,
P.
,
Zhao
,
C. Y.
,
Li
,
H. J.
, and
Li
,
X. Y.
,
2021
, “
Impingement Dynamics of [EMIm]Ac Ionic Liquid Drops on Heated Porous Surfaces
,”
Exp. Therm. Fluid Sci.
,
120
, p.
110225
.10.1016/j.expthermflusci.2020.110225
6.
Ekkad
,
S. V.
, and
Singh
,
P.
,
2021
, “
A Modern Review on Jet Impingement Heat Transfer Methods
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
6
), p.
064001
.10.1115/1.4049496
7.
Attalla
,
M.
, and
Specht
,
E.
,
2009
, “
Heat Transfer Characteristics From in-Line Arrays of Free Impinging Jets
,”
Heat Mass Transfer
,
45
(
5
), pp.
537
543
.10.1007/s00231-008-0452-y
8.
Baydar
,
E.
, and
Ozmen
,
Y.
,
2006
, “
An Experimental Investigation on Flow Structures of Confined and Unconfined Impinging Air Jets
,”
Heat Mass Transfer
,
42
(
4
), pp.
338
346
.10.1007/s00231-005-0021-6
9.
Maghrabie
,
H. M.
,
Attalla
,
M.
,
Fawaz
,
H. E.
, and
Khalil
,
M.
,
2018
, “
Effect of Jet Position on Cooling an Array of Heated Obstacles
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011005
.10.1115/1.4036788
10.
Maghrabie
,
H. M.
,
Attalla
,
M.
,
Fawaz
,
H. E.
, and
Khalil
,
M.
,
2019
, “
Impingement/Effusion Cooling of Electronic Components With Cross-Flow
,”
Appl. Therm. Eng.
,
151
, pp.
199
213
.10.1016/j.applthermaleng.2019.01.106
11.
Khalil
,
M.
,
Mohamed
,
S. A.
,
Attalla
,
M.
, and
Maghrabie
,
H. M.
,
2022
, “
Cooling of Gas Turbine Blade Leading Edge Via an Array of Air Jets With Variable Diameters
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
12
), p.
123801
.10.1115/1.4055598
12.
Royne
,
A.
, and
Dey
,
C. J.
,
2007
, “
Design of a Jet Impingement Cooling Device for Densely Packed PV Cells Under High Concentration
,”
Sol. Energy
,
81
(
8
), pp.
1014
1024
.10.1016/j.solener.2006.11.015
13.
Ichimiya
,
K.
, and
Yamada
,
Y.
,
2003
, “
Three-Dimensional Heat Transfer of a Confined Circular Impinging Jet With Buoyancy Effects
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
2
), pp.
250
256
.10.1115/1.1527901
14.
Colucci
,
D. W.
, and
Viskanta
,
R.
,
1996
, “
Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet
,”
Exp. Therm. Fluid Sci.
,
13
(
1
), pp.
71
80
.10.1016/0894-1777(96)00015-5
15.
Guo
,
T.
, Rau,
M. J.
, Vlachos, P, P., and
Garmell
,
S. V.
,
2017
, “
Axisymmetric Wall Jet Development in Confined Jet Impingement
,”
Phys. Fluids
,
29
(
2
), p.
025102
.10.1063/1.4975394
16.
Hoefler
,
F.
,
Schueren
,
S.
,
Wolfersdorf
,
J. V.
, and
Naik
,
S.
,
2009
, “
Heat Transfer in a Confined Oblique Jet Impingement Configuration
,”
ASME
Paper No. GT2009-59354.
17.
Glynn
,
C.
,
Donovan
,
T. O.
, and
Murray
,
D. B.
,
2005
, “
Jet Impingement Cooling
,”
Proceedings of the Nineth UK National Heat Transfer Conference
, Manchester, UK, pp.
5
6
.
18.
San
,
J.-Y.
,
Huan
,
C.-H.
, and
Sh
,
M.-H.
,
1997
, “
Impingement Cooling of a Confined Circular Air Jet
,”
Int. J. Heat Mass Transfer
,
40
(
6
), pp.
1355
1364
.10.1016/S0017-9310(96)00201-3
19.
Caggese
,
O.
,
Gnaegi
,
G.
,
Hannema
,
G.
,
Terzis
,
A.
, and
Ott
,
P.
,
2013
, “
Experimental and Numerical Investigation of a Fully Confined Impingement Round Jet
,”
Int. J. Heat Mass Transfer
,
65
, pp.
873
882
.10.1016/j.ijheatmasstransfer.2013.06.043
20.
San
,
J. Y.
, and
Shiao
,
W. Z.
,
2006
, “
Effects of Jet Plate Size and Plate Spacing on the Stagnation Nusselt Number for a Confined Circular Air Jet Impinging on a Flat Surface
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3477
3486
.10.1016/j.ijheatmasstransfer.2006.02.055
21.
Attalla
,
M.
,
Maghrabie
,
H. M.
, and
Specht
,
E.
,
2016
, “
An Experimental Investigation on Fluid Flow and Heat Transfer of Rough Mini-Channel With Rectangular Cross Section
,”
Exp. Therm. Fluid Sci.
,
75
, pp.
199
210
.10.1016/j.expthermflusci.2016.01.019
22.
Attalla
,
M.
, and
Maghrabie
,
H. M.
,
2020
, “
Investigation of Effectiveness and Pumping Power of Plate Heat Exchanger With Rough Surface
,”
Chem. Eng. Sci.
,
211
, p.
115277
.10.1016/j.ces.2019.115277
23.
Attalla
,
M.
, and
Maghrabie
,
H. M.
,
2020
, “
An Experimental Study on Heat Transfer and Fluid Flow of Rough Plate Heat Exchanger Using Al2O3/Water Nanofluid
,”
Exp. Heat Transfer
,
33
(
3
), pp.
261
281
.10.1080/08916152.2019.1625469
24.
Ventola
,
L.
,
Chiavazzo
,
E.
,
Calignano
,
F.
,
Manfredi
,
D.
, and
Asinari
,
P.
,
2014
, “
Heat Transfer Enhancement by Finned Heat Sinks With Micro-Structured Roughness
,”
J. Phys. Conf. Ser.
,
494
(
1
), p.
012009
.10.1088/1742-6596/494/1/012009
25.
Attalla
,
M.
,
Abdel Samee
,
A. A.
, and
Salem
,
N. N.
,
2020
, “
Experimental Investigation of Heat Transfer of Impinging Jet on a Roughened Plate by a Micro Cubic Shape
,”
Exp. Heat Transfer
,
33
(
3
), pp.
210
225
.10.1080/08916152.2019.1614113
26.
Chen
,
L.
,
Brakmann
,
R. G. A.
,
Weigand
,
B.
,
Poser
,
R.
, and
Yang
,
Q.
,
2020
, “
Detailed Investigation of Staggered Jet Impingement Array Cooling Performance With Cubic Micro Pin Fin Roughened Target Plate
,”
Appl. Therm. Eng.
,
171
, p.
115095
.10.1016/j.applthermaleng.2020.115095
27.
Li
,
H. Y.
,
Chao
,
S. M.
, and
Tsai
,
G.
,
2005
, “
Thermal Performance Measurement of Heat Sinks With Confined Impinging Jet by Infrared Thermography
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5386
5394
.10.1016/j.ijheatmasstransfer.2005.07.007
28.
Nagesha
,
K.
,
Srinivasan
,
K.
, and
Sundararajan
,
T.
,
2020
, “
Enhancement of Jet Impingement Heat Transfer Using Surface Roughness Elements at Different Heat Inputs
,”
Exp. Therm. Fluid Sci.
,
112
, p.
109995
.10.1016/j.expthermflusci.2019.109995
29.
Ismail
,
M. F.
, and
Saha
,
S. C.
,
2018
, “
Enhancement of Confined Air Jet Impingement Heat Transfer Using Perforated Pin-Fin Heat Sinks
,”
Application of Thermo-Fluid Processes in Energy Systems
, Springer, Singapore, pp.
231
243
.
30.
Singh
,
P.
,
Zhang
,
M.
,
Ahmed
,
S.
,
Ramakrishnan
,
K. R.
, and
Ekkad
,
S.
,
2019
, “
Effect of Micro-Roughness Shapes on Jet Impingement Heat Transfer and Fin-Effectiveness
,”
Int. J. Heat Mass Transfer
,
132
, pp.
80
95
.10.1016/j.ijheatmasstransfer.2018.11.135
31.
Bhansali
,
P. S.
,
Ramakrishnan
,
K. R.
, and
Ekkad
,
S. V.
,
2022
, “
Effect of Pin-Fins on Jet Impingement Heat Transfer Over a Rotating Disk
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
4
), p.
042303
.10.1115/1.4053371
32.
Zhao
,
W.
,
Kumar
,
K.
, and
Mujumdar
,
A. S.
,
2004
, “
Flow and Heat Transfer Characteristics of Confined Noncircular Turbulent Impinging Jets
,”
Dry. Technol.
,
22
(
9
), pp.
2027
2049
.10.1081/DRT-200034239
33.
Zhou
,
W.
,
Yuan
,
L.
,
Liu
,
Y.
,
Peng
,
D.
, and
Wen
,
X.
,
2019
, “
Heat Transfer of a Sweeping Jet Impinging at Narrow Spacings
,”
Exp. Therm. Fluid Sci.
,
103
, pp.
89
98
.10.1016/j.expthermflusci.2019.01.007
34.
Reodikar
,
S. A.
,
Meena
,
H. C.
,
Vinze
,
R.
, and
Prabhu
,
S. V.
,
2016
, “
Influence of the Orifice Shape on the Local Heat Transfer Distribution and Axis Switching by Compressible Jets Impinging on Flat Surface
,”
Int. J. Therm. Sci.
,
104
, pp.
208
224
.10.1016/j.ijthermalsci.2016.01.013
35.
Subramanian
,
G. H.
,
Nagarjun
,
C. H. V. S.
,
Kumar
,
K. V. S.
,
Kumar
,
B. A.
,
Srikanth
,
V.
, and
Srikrishnan
,
A. R.
,
2018
, “
Mixing Enhancement Using Chevron Nozzle: Studies on Free Jets and Confined Jets
,”
Sādhanā
,
43
(
109
), pp.
1
14
.10.1007/s12046-018-0898-7
36.
Brignoni
,
L. A.
, and
Garimella
,
S. V.
,
2000
, “
Effects of Nozzle-Inlet Chamfering on Pressure Drop and Heat Transfer in Confined Air Jet Impingement
,”
Int. J. Heat Mass Transfer
,
43
(
7
), pp.
1133
1139
.10.1016/S0017-9310(99)00207-0
37.
Shuja
,
S. Z.
,
Yilbas
,
B. S.
, and
Rashid
,
M.
,
2003
, “
Confined Swirling Jet Impingement Onto an Adiabatic Wall
,”
Int. J. Heat Mass Transfer
,
46
(
16
), pp.
2947
2955
.10.1016/S0017-9310(03)00073-5
38.
Rakhsha
,
S.
,
Rajabi
,
Z. M.
, and
Saedodin
,
S.
,
2021
, “
Experimental and Numerical Study of Flow and Heat Transfer From a Pulsed Jet Impinging on a Pinned Surface
,”
Exp. Heat Transfer
,
34
(
4
), pp.
376
391
.10.1080/08916152.2020.1755388
39.
Attalla
,
M.
, and
Salem
,
M.
,
2013
, “
Effect of Nozzle Geometry on Heat Transfer Characteristics From a Single Circular Air Jet
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
723
733
.10.1016/j.applthermaleng.2012.09.032
40.
Attalla
,
M.
, and
Salem
,
M.
,
2015
, “
Experimental Investigation of Heat Transfer for a Jet Impinging Obliquely on a Flat Surface
,”
Exp. Heat Transfer
,
28
(
4
), pp.
378
391
.10.1080/08916152.2014.890963
41.
Rashidi
,
M. M.
,
Ali
,
M.
,
Freidoonimehr
,
N.
, and
Nazari
,
F.
,
2013
, “
Parametric Analysis and Optimization of Entropy Generation in Unsteady MHD Flow Over a Stretching Rotating Disk Using Artificial Neural Network and Particle Swarm Optimization Algorithm
,”
Energy
,
55
, pp.
497
510
.10.1016/j.energy.2013.01.036
42.
Polajnar
,
I.
,
Grum
,
J.
, and
Esmail
,
E. A.
,
2008
, “
Sources of Acoustic Emission in Resistance Spot Welding
,”
International Conference “DEFEKTOSKOPIE”
,
Brno, Czech Republic
, Nov. 4–6, pp.
187
194
.
43.
Holman
,
J. P.
,
2010
,
Heat Transfer
, 10th ed.,
McGraw-Hill
,
New York
.
44.
Çengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2020
,
Heat and Mass Transfer: Fundamentals and Applications
, 6th ed.,
McGraw-Hill Education
,
New York
.
45.
Attalla
,
M.
,
Maghrabie
,
H. M.
,
Qayyum
,
A.
,
Al-Hasnawi
,
A. G.
, and
Specht
,
E.
,
2017
, “
Influence of the Nozzle Shape on Heat Transfer Uniformity for in-Line Array of Impinging Air Jets
,”
Appl. Therm. Eng.
,
120
, pp.
160
169
.10.1016/j.applthermaleng.2017.03.134
46.
Attalla
,
M.
,
Maghrabie
,
H. M.
, and
Specht
,
E.
,
2017
, “
Effect of Inclination Angle of a Pair of Air Jets on Heat Transfer Into the Flat Surface
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
85
94
.10.1016/j.expthermflusci.2017.02.023
47.
Holman
,
J. P.
,
2012
,
Experimental Methods for Engineers
, 8th ed.,
McGraw-Hill
,
New York
.
48.
Lyu
,
Y.
,
Zhang
,
J.
,
Liu
,
X.
, and
Shan
,
Y.
,
2019
, “
Experimental Study of Single-Row Chevron-Jet Impingement Heat Transfer on Concave Surfaces With Different Curvatures
,”
Chin. J. Aeronaut.
,
32
(
10
), pp.
2275
2285
.10.1016/j.cja.2019.07.002
49.
Attalla
,
M.
,
2015
, “
Stagnation Region Heat Transfer for Circular Jets Impinging on a Flat Plate
,”
Exp. Heat Transfer
,
28
(
2
), pp.
139
155
.10.1080/08916152.2013.829134
You do not currently have access to this content.