Abassian, F.
,
Haswell, D. J.
, and
Knowles, N. C.
, 1987, “
Free Vibration Benchmarks,” National Agency for Finite Element Methods and Standards, Glasgow, UK.

Al-Bermani,
F. G. A.
, and
Liew,
K. M.
, 1996, “
Natural Frequencies of Thick Arbitrary Quadrilateral Plates Using the pb–2 Ritz Method,” J. Sound Vib.,
196(4), pp. 371–385.

[CrossRef]
Ayad,
R.
,
Dhatt,
G.
, and
Batoz,
J. L.
, 1998, “
A New Hybrid-Mixed Variational Approach for Reissner–Mindlin Plates. The MiSP Model,” Int. J. Numer. Methods Eng.,
42(7), pp. 1149–1179.

[CrossRef]
Irie,
T.
,
Yamada,
G.
, and
Aomura,
S.
, 1980, “
Natural Frequencies of Mindlin Circular Plates,” ASME J. Appl. Mech.,
47(3), pp. 652–655.

[CrossRef]
Taylor,
R. L.
, and
Auricchio,
F.
, 1993, “
Linked Interpolation for Reissner-Mindlin Plate Elements—Part II: A Simple Triangle,” Int. J. Numer. Methods Eng.,
36(18), pp. 3057–3066.

[CrossRef]
Timoshenko,
S.
, and
Woinowsky-Krieger,
S.
, 1959, Theory of Plates and Shells (Engineering Societies Monographs),
McGraw-Hill, New York.

Szilard,
R.
, 2004, Theories and Applications of Plate Analysis: Classical Numerical and Engineering Methods,
Wiley, Hoboken, NJ.

Clough,
R. W.
, 1960, The Finite Element Method in Plane Stress Analysis,
American Society of Civil Engineers, Reston, VA.

Love,
A. E. H.
, 1888, “
The Small Free Vibrations and Deformation of a Thin Elastic Shell,” Philos. Trans. R. Soc. London,
179, pp. 491–546.

https://www.jstor.org/stable/90527
Mindlin,
R. D.
, 1951, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Pates,” ASME J. Appl. Mech.,
18, pp. 31–38.

Reissner,
E.
, 1945, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates,” ASME J. Appl. Mech.,
12, pp. A68–A77.

Zienkiewicz,
O. C.
, and
Taylor,
R. L.
, 2000, The Finite Element Method: Solid Mechanics,
Butterworth-Heinemann, Oxford, UK.

Bathe,
K.-J.
, and
Dvorkin,
E. N.
, 1986, “
A Formulation of General Shell Elements—The Use of Mixed Interpolation of Tensorial Components,” Int. J. Numer. Methods Eng.,
22(3), pp. 697–722.

[CrossRef]
Ko,
Y.
,
Lee,
P.-S.
, and
Bathe,
K.-J.
, 2016, “
The MITC4+ Shell Element and Its Performance,” Comput. Struct.,
169, pp. 57–68.

[CrossRef]
Bathe,
K.-J.
,
Lee,
P.-S.
, and
Hiller,
J.-F.
, 2003, “
Towards Improving the MITC9 Shell Element,” Comput. Struct.,
81(8–11), pp. 477–489.

[CrossRef]
Bucalem,
M. L.
, and
Bathe,
K.-J.
, 1993, “
Higher-Order MITC General Shell Elements,” Int. J. Numer. Methods Eng.,
36(21), pp. 3729–3754.

[CrossRef]
Beirão da Veiga,
L.
,
Chapelle,
D.
, and
Paris Suarez,
I.
, 2007, “
Towards Improving the MITC6 Triangular Shell Element,” Comput. Struct.,
85(21–22), pp. 1589–1610.

[CrossRef]
Bathe,
K.-J.
,
Brezzi,
F.
, and
Cho,
S. W.
, 1989, “
The MITC7 and MITC9 Plate Bending Elements,” Comput. Struct.,
32(3–4), pp. 797–814.

[CrossRef]
Bletzinger,
K.-U.
,
Bischoff,
M.
, and
Ramm,
E.
, 2000, “
A Unified Approach for Shear-Locking-Free Triangular and Rectangular Shell Finite Elements,” Comput. Struct.,
75(3), pp. 321–334.

[CrossRef]
Tessler,
A.
, and
Hughes,
T. J. R.
, 1985, “
A Three-Node Mindlin Plate Element With Improved Transverse Shear,” Comput. Methods Appl. Mech. Eng.,
50(1), pp. 71–101.

[CrossRef]
Tessler,
A.
, and
Hughes,
T. J. R.
, 1983, “
An Improved Treatment of Transverse Shear in the Mindlin-Type Four-Node Quadrilateral Element,” Comput. Methods Appl. Mech. Eng.,
39(3), pp. 311–335.

[CrossRef]
Zrahia,
U.
, and
Bar-Yoseph,
P.
, 1995, “
Plate Spectral Elements Based Upon Reissner–Mindlin Theory,” Int. J. Numer. Methods Eng.,
38(8), pp. 1341–1360.

[CrossRef]
Brito,
K. D.
, and
Sprague,
M. A.
, 2012, “
Reissner–Mindlin Legendre Spectral Finite Elements With Mixed Reduced Quadrature,” Finite Elem. Anal. Des.,
58, pp. 74–83.

[CrossRef]
Sprague,
M. A.
, and
Purkayastha,
A.
, 2015, “
Legendre Spectral Finite Elements for Reissner–Mindlin Composite Plates,” Finite Elem. Anal. Des.,
105, pp. 33–43.

[CrossRef]
Tchébychev, M. P.
, 1954, “
Théorie des mécanismes connus sous le nom de parallélogrammes,” Mémoires des Savants étrangers présentés à l'Académie de Saint-Pétersbourg,
7, pp. 539–586.

Patera,
A. T.
, 1984, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion,” J. Comput. Phys.,
54(3), pp. 468–488.

[CrossRef]
Canuto,
C.
,
Quarteroni,
A.
,
Hussaini,
M. Y.
, and
Zang,
T. A.
, 2012, “
Spectral Methods in Fluid Dynamics,” Springer, New York.

Deville,
M. O.
, 1990, “
Chebyshev Collocation Solutions of Flow Problems,” Comput. Methods Appl. Mech. Eng.,
80(1–3), pp. 27–37.

[CrossRef]
Lee-Wing,
H.
, and
Patera,
A. T.
, 1990, “
A Legendre Spectral Element Method for Simulation of Unsteady Incompressible Viscous Free-Surface Flows,” Comput. Methods Appl. Mech. Eng.,
80(1–3), pp. 355–366.

[CrossRef]
Komatitsch,
D.
,
Vilotte,
J.-P.
,
Vai,
R.
,
Castillo-Covarrubias,
J. M.
, and
Sánchez-Sesma,
F. J.
, 1999, “
The Spectral Element Method for Elastic Wave Equations—Application to 2-D and 3-D Seismic Problems,” Int. J. Numer. Methods Eng.,
45(9), pp. 1139–1164.

[CrossRef]
Seriani,
G.
, 1998, “
3-D Large-Scale Wave Propagation Modeling by Spectral Element Method on Cray T3E Multiprocessor,” Comput. Methods Appl. Mech. Eng.,
164(1–2), pp. 235–247.

[CrossRef]
Seriani,
G.
, 1997, “
A Parallel Spectral Element Method for Acoustic Wave Modeling,” J. Comput. Acoust.,
5(1), pp. 53–69.

[CrossRef]
Dauksher,
W.
, and
Emery,
A. F.
, 1997, “
Accuracy in Modeling the Acoustic Wave Equation With Chebyshev Spectral Finite Elements,” Finite Elem. Anal. Des.,
26(2), pp. 115–128.

[CrossRef]
Seriani,
G.
, and
Priolo,
E.
, 1994, “
Spectral Element Method for Acoustic Wave Simulation in Heterogeneous Media,” Finite Elem. Anal. Des.,
16(3–4), pp. 337–348.

[CrossRef]
Seriani,
G.
,
Priolo,
E.
,
Carcione,
J.
, and
Padovani,
E.
, 1992, “
High-Order Spectral Element Method for Elastic Wave Modeling,” SEG Technical Program Expanded Abstracts 1992, Society of Exploration Geophysicists, Tulsa, OK, pp. 1285–1288.

Nguyen,
H. D.
,
Paik,
S.
, and
Douglass,
R. W.
, 1997, “
A Legendre-Spectral Element Method for Flow and Heat Transfer About an Accelerating Droplet,” J. Sci. Comput.,
12, pp. 75–97.

[CrossRef]
Spall,
R.
, 1995, “
Spectral Collocation Methods for One-Dimensional Phase-Change Problems,” Int. J. Heat Mass Transfer,
38(15), pp. 2743–2748.

[CrossRef]
Dauksher,
W.
, and
Emery,
A. F.
, 2000, “
The Solution of Elastostatic and Elastodynamic Problems With Chebyshev Spectral Finite Elements,” Comput. Methods Appl. Mech. Eng.,
188(1–3), pp. 217–233.

[CrossRef]
Lee,
U.
, 2009, Spectral Element Method in Structural Dynamics,
Wiley, Singapore.

Liu,
G. R.
, and
Quek,
S. S.
, 2003, Finite Element Method: A Practical Course,
Butterworth-Heinemann,
Oxford, UK, pp. 1–11.

Nguyen-Thoi,
T.
,
Phung-Van,
P.
,
Thai-Hoang,
C.
, and
Nguyen-Xuan,
H.
, 2013, “
A Cell-Based Smoothed Discrete Shear Gap Method (CS-DSG3) Using Triangular Elements for Static and Free Vibration Analyses of Shell Structures,” Int. J. Mech. Sci.,
74, pp. 32–45.

[CrossRef]
Fornberg,
B.
, and
Zuev,
J.
, 2007, “
The Runge Phenomenon and Spatially Variable Shape Parameters in RBF Interpolation,” Comput. Math. Appl.,
54(3), pp. 379–398.

Nguyen-Thoi,
M. H.
,
Le-Anh,
L.
,
Ho-Huu,
V.
,
Dang-Trung,
H.
, and
Nguyen-Thoi,
T.
, 2015, “
An Extended Cell-Based Smoothed Discrete Shear Gap Method (XCS-FEM-DSG3) for Free Vibration Analysis of Cracked Reissner-Mindlin Shells,” Front. Struct. Civ. Eng.,
9(4), pp. 341–358.

[CrossRef]
Nguyen-Thoi,
T.
,
Phung-Van,
P.
,
Nguyen-Xuan,
H.
, and
Thai-Hoang,
C.
, 2012, “
A Cell-Based Smoothed Discrete Shear Gap Method Using Triangular Elements for Static and Free Vibration Analyses of Reissner–Mindlin Plates,” Int. J. Numer. Methods Eng.,
91(7), pp. 705–741.

[CrossRef]
Hiller,
J.-F.
, and
Bathe,
K.-J.
, 2003, “
Measuring Convergence of Mixed Finite Element Discretizations: An Application to Shell Structures,” Comput. Struct.,
81(8–11), pp. 639–654.

[CrossRef]
Bathe,
K.-J.
, 2014, Finite Element Procedures. Prentice Hall, Upper Saddle River, NJ.

Chapelle, D.
, and
Bathe, K.-J.
, 2011, The Finite Element Analysis of Shells—Fundamentals, Springer-Verlag, Berlin.

Nguyen-Xuan,
H.
,
Rabczuk,
T.
,
Bordas,
S.
, and
Debongnie,
J. F.
, 2008, “
A Smoothed Finite Element Method for Plate Analysis,” Comput. Methods Appl. Mech. Eng.,
197(13–16), pp. 1184–1203.

[CrossRef]
Rao,
H. V. S. G.
, and
Chaudhary,
V. K.
, 1988, “
Analysis of Skew and Triangular Plates in Bending,” Comput. Struct.,
28(2), pp. 223–235.

[CrossRef]
Morley,
L. S. D.
, 1962, “
Bending of a Simply Supported Rhombic Plate Under Uniform Normal Loading,” Q. J. Mech. Appl. Math.,
15(4), pp. 413–426.

[CrossRef]
Häggblad,
B.
, and
Bathe,
K.-J.
, 1990, “
Specifications of Boundary Conditions for Reissner/Mindlin Plate Bending Finite Elements,” Int. J. Numer. Methods Eng.,
30(5), pp. 981–1011.

[CrossRef]
Leissa,
A. W.
, 1969, “
Vibration of Plates,” Ohio State University, Columbus, OH, p. 362.

Lee,
S. J.
, 2004, “
Free Vibration Analysis of Plates by Using a Four-Node Finite Element Formulated With Assumed Natural Transverse Shear Strain,” J. Sound Vib.,
278(3), pp. 657–684.

[CrossRef]
Shi,
X.
,
Shi,
D.
,
Li,
W. L.
, and
Wang,
Q.
, 2014, “
A Unified Method for Free Vibration Analysis of Circular, Annular and Sector Plates With Arbitrary Boundary Conditions,” J. Vib. Control,
22(2), pp. 442–456.

[CrossRef]
Shojaee,
S.
,
Izadpanah,
E.
,
Valizadeh,
N.
, and
Kiendl,
J.
, 2012, “
Free Vibration Analysis of Thin Plates by Using a NURBS-Based Isogeometric Approach,” Finite Elem. Anal. Des.,
61, pp. 23–34.

[CrossRef]
Krysl,
P.
, and
Belytschko,
T.
, 1996, “
Analysis of Thin Shells by the Element-Free Galerkin Method,” Int. J. Solids Struct.,
33(20–22), pp. 3057–3080.

[CrossRef]
Noguchi,
H.
,
Kawashima,
T.
, and
Miyamura,
T.
, 2000, “
Element Free Analyses of Shell and Spatial Structures,” Int. J. Numer. Methods Eng.,
47(6), pp. 1215–1240.

[CrossRef]
Liew,
K. M.
,
Peng,
L. X.
, and
Ng,
T. Y.
, 2002, “
Three-Dimensional Vibration Analysis of Spherical Shell Panels Subjected to Different Boundary Conditions,” Int. J. Mech. Sci.,
44(10), pp. 2103–2117.

[CrossRef]