0
Research Papers

Additive Manufacturing of Functionally Graded Material Objects: A Review

[+] Author and Article Information
Binbin Zhang

Manufacturing and Design (MAD) Lab,
Department of Mechanical and
Aersopace Engineering,
University at Buffalo (UB)-SUNY,
318 Jarvis Hall,
Buffalo, NY 14260
e-mail: bzhang25@buffalo.edu

Prakhar Jaiswal

Manufacturing and Design (MAD) Lab,
Department of Mechanical and
Aersopace Engineering,
University at Buffalo (UB)-SUNY,
318 Jarvis Hall,
Buffalo, NY 14260
e-mail: prakharj@buffalo.edu

Rahul Rai

Manufacturing and Design (MAD) Lab,
Department of Mechanical and
Aersopace Engineering,
University at Buffalo (UB)-SUNY,
318 Jarvis Hall,
Buffalo, NY 14260
e-mail: rahulrai@buffalo.edu

Saigopal Nelaturi

Palo Alto Research Center,
3333 Coyote Hill Road,
Palo Alto, CA 94304
e-mail: saigopal.nelaturi@parc.com

1Corresponding author.

Manuscript received August 20, 2017; final manuscript received March 15, 2018; published online July 3, 2018. Assoc. Editor: Yong Chen.

J. Comput. Inf. Sci. Eng 18(4), 041002 (Jul 03, 2018) (16 pages) Paper No: JCISE-17-1168; doi: 10.1115/1.4039683 History: Received August 20, 2017; Revised March 15, 2018

Functionally graded materials (FGM) have recently attracted a lot of research attention in the wake of the recent prominence of additive manufacturing (AM) technologies. The continuously varying spatial composition profile of two or more materials affords FGM to possess properties of multiple different materials simultaneously. Emerging AM technologies enable manufacturing complex shapes with customized multifunctional material properties in an additive fashion. In this paper, we focus on providing an overview of research at the intersection of AM techniques and FGM objects. We specifically discuss FGM modeling representation schemes and outline a classification system to classify existing FGM representation methods. We also highlight the key aspects such as the part orientation, slicing, and path planning processes that are essential for fabricating FGM object through the use of multimaterial AM techniques.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kumar, V. , Burns, D. , Dutta, D. , and Hoffmann, C. , 1999, “ A Framework for Object Modeling,” Comput.-Aided Des., 31(9), pp. 541–556. [CrossRef]
Markworth, A. , Ramesh, K. , and Parks, W., Jr. , 1995, “ Modelling Studies Applied to Functionally Graded Materials,” J. Mater. Sci., 30(9), pp. 2183–2193. [CrossRef]
Mahamood, R. M. , Akinlabi, E. T. , Shukla, M. , and Pityana, S. , 2012, “ Functionally Graded Material: An Overview,” World Congress on Engineering (WCE), London, July 4–6, pp. 1593–1597. http://www.iaeng.org/publication/WCE2012/WCE2012_pp1593-1597.pdf
Domack, M. , and Baughman, J. , 2005, “ Development of Nickel-Titanium Graded Composition Components,” Rapid Prototyping J., 11(1), pp. 41–51. [CrossRef]
Marin, L. , 2005, “ Numerical Solution of the Cauchy Problem for Steady-State Heat Transfer in Two-Dimensional Functionally Graded Materials,” Int. J. Solids Struct., 42(15), pp. 4338–4351. [CrossRef]
Hirano, T. , Teraki, J. , and Yamada, T. , 1990, “ On the Design of Functionally Gradient Materials,” First International Symposium on Functionally Gradient Materials, Sendai, Japan, Oct. 8–9, pp. 5–10.
Pompe, W. , Worch, H. , Epple, M. , Friess, W. , Gelinsky, M. , Greil, P. , Hempel, U. , Scharnweber, D. , and Schulte, K. , 2003, “ Functionally Graded Materials for Biomedical Applications,” Mater. Sci. Eng.: A, 362(1–2), pp. 40–60. [CrossRef]
Matsuo, S. , Watari, F. , and Ohata, N. , 2001, “ Fabrication of a Functionally Graded Dental Composite Resin Post and Core by Laser Lithography and Finite Element Analysis of Its Stress Relaxation Effect on Tooth Root,” Dent. Mater. J., 20(4), pp. 257–274. [CrossRef] [PubMed]
Watari, F. , Yokoyama, A. , Omori, M. , Hirai, T. , Kondo, H. , Uo, M. , and Kawasaki, T. , 2004, “ Biocompatibility of Materials and Development to Functionally Graded Implant for Bio-Medical Application,” Compos. Sci. Technol., 64(6), pp. 893–908. [CrossRef]
Oonishi, H. , Noda, T. , Ito, S. , Kohda, A. , Ishimaru, H. , Yamamoto, M. , and Tsuji, E. , 1994, “ Effect of Hydroxyapatite Coating on Bone Growth Into Porous Titanium Alloy Implants Under Loaded Conditions,” J. Appl. Biomater., 5(1), pp. 23–37. [CrossRef]
Müller, E. , Drašar, Č. , Schilz, J. , and Kaysser, W. , 2003, “ Functionally Graded Materials for Sensor and Energy Applications,” Mater. Sci. Eng.A, 362(1–2), pp. 17–39. [CrossRef]
Niino, M. , Kisara, K. , and Mori, M. , 2005, “ Feasibility Study of FGM Technology in Space Solar Power Systems (SSPS),” Mater. Sci. Forum, 492–493, pp. 163–170. [CrossRef]
Malinina, M. , Sammi, T. , and Gasik, M. M. , 2005, “ Corrosion Resistance of Homogeneous and fgm Coatings,” Mater. Sci. Forum, 492–493, pp. 305–310. [CrossRef]
Kawasaki, A. , and Watanabe, R. , 2002, “ Thermal Fracture Behavior of Metal/Ceramic Functionally Graded Materials,” Eng. Fract. Mech., 69(14–16), pp. 1713–1728. [CrossRef]
Osaka, T. , Matsubara, H. , Homma, T. , Mitamura, S. , and Noda, K. , 1990, “ Microstructural Study of Electroless-Plated Conirep/Nimop Double-Layered Media for Perpendicular Magnetic Recording,” Jpn. J. Appl. Phys., 29(10), p. 1939. [CrossRef]
Liu, G. , and Tani, J. , 1994, “ Surface Waves in Functionally Gradient Piezoelectric Plates,” ASME J. Vib. Acoust., 116(4), pp. 440–448. [CrossRef]
Librescu, L. , Oh, S.-Y. , and Song, O. , 2005, “ Thin-Walled Beams Made of Functionally Graded Materials and Operating in a High Temperature Environment: Vibration and Stability,” J. Therm. Stresses, 28(6–7), pp. 649–712. [CrossRef]
Kumar, S. , Reddy, K. M. , Kumar, A. , and Devi, G. R. , 2013, “ Development and Characterization of Polymer–Ceramic Continuous Fiber Reinforced Functionally Graded Composites for Aerospace Application,” Aerosp. Sci. Technol., 26(1), pp. 185–191. [CrossRef]
Richardson, M., 2014, “From Art to Part,” Aerospace Manufacturing Magazine, MIT Publishing, Rochester, UK, accessed Feb. 20, 2016, http://www.aero-mag.com/features/63/20141/2265/
Noor, A. K. , Venneri, S. L. , Paul, D. B. , and Hopkins, M. A. , 2000, “ Structures Technology for Future Aerospace Systems,” Comput. Struct., 74(5), pp. 507–519. [CrossRef]
Miyamoto, Y. , Kaysser, W. , Rabin, B. , Kawasaki, A. , and Ford, R. G. , 2013, Functionally Graded Materials: Design, Processing and Applications, Vol. 5, Springer Science & Business Media, New York.
Cooley, W. G. , 2005, “ Application of Functionally Graded Materials in Aircraft Structures,” Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, Technical Report No. AFIT/GAE/ENY/05-M04. http://www.dtic.mil/dtic/tr/fulltext/u2/a434403.pdf
Leong, K. , Chua, C. , Sudarmadji, N. , and Yeong, W. , 2008, “ Engineering Functionally Graded Tissue Engineering Scaffolds,” J. Mech. Behav. Biomed. Mater., 1(2), pp. 140–152. [CrossRef] [PubMed]
Thomas, V. , Zhang, X. , Catledge, S. A. , and Vohra, Y. K. , 2007, “ Functionally Graded Electrospun Scaffolds With Tunable Mechanical Properties for Vascular Tissue Regeneration,” Biomed. Mater., 2(4), p. 224. [CrossRef] [PubMed]
Chua, C. , Leong, K. , Sudarmadji, N. , Liu, M. , and Chou, S. , 2011, “ Selective Laser Sintering of Functionally Graded Tissue Scaffolds,” MRS Bull., 36(12), pp. 1006–1014. [CrossRef]
Hazan, E. , Ben-Yehuda, O. , Madar, N. , and Gelbstein, Y. , 2015, “ Functional Graded Germanium–Lead Chalcogenide-Based Thermoelectric Module for Renewable Energy Applications,” Adv. Energy Mater., 5(11), p. 1500272.
Kambe, M. , and Shikata, H. , 2002, “ Intensive Energy Density Thermoelectric Energy Conversion System by Using FGM Compliant Pads,” Acta Astronaut., 51(1–9), pp. 161–171. [CrossRef]
Okano, K. , and Takagi, Y. , 1996, “ Application of Sic-Si Functionally Gradient Material to Thermoelectric Energy Conversion Device,” Electr. Eng. Jpn., 117(6), pp. 9–17. [CrossRef]
Wośko, M. , Paszkiewicz, B. , Piasecki, T. , Szyszka, A. , Paszkiewicz, R. , and Tłaczała, M. , 2005, “ Applications of Functionally Graded Materials in Optoelectronic Devices,” Optica Appl., 35(3), pp. 663–667. https://www.infona.pl/resource/bwmeta1.element.baztech-article-BWA0-0006-0075
Wośko, M. , Paszkiewicz, B. , Piasecki, T. , Szyszka, A. , Paszkiewicz, R. , and Tłaczała, M. , 2005, “ Application and Modeling of Functionally Graded Materials for Optoelectronic Devices,” IEEE International Students and Young Scientists Workshop Photonics and Microsystems, Dresden, Germany, July 7–8, pp. 87–89.
Gupta, K. , and Gupta, N. , 2015, “ Recent Advances and Emerging Trends in Electrical and Electronic Materials,” Advanced Electrical and Electronics Materials: Processes and Applications, Wiley-Blackwell, Hoboken, NJ, pp. 631–675. [CrossRef]
Udupa, G. , Rao, S. S. , and Gangadharan, K. , 2014, “ Functionally Graded Composite Materials: An Overview,” Procedia Mater. Sci., 5, pp. 1291–1299. [CrossRef]
Kieback, B. , Neubrand, A. , and Riedel, H. , 2003, “ Processing Techniques for Functionally Graded Materials,” Mater. Sci. Eng.: A, 362(1–2), pp. 81–106. [CrossRef]
Ivosevic, M. , Knight, R. , Kalidindi, S. , Palmese, G. , and Sutter, J. , 2006, “ Solid Particle Erosion Resistance of Thermally Sprayed Functionally Graded Coatings for Polymer Matrix Composites,” Surf. Coat. Technol., 200(16–17), pp. 5145–5151. [CrossRef]
Knoppers, G. , Gunnink, J. , Van Den Hout, J. , and Van Vliet, W. , 2005, “ The Reality of Functionally Graded Material Products,” Intelligent Production Machines and Systems-First I* PROMS Virtual Conference, July 4–15, p. 467.
Vidimče, K. , Wang, S.-P. , Ragan-Kelley, J. , and Matusik, W. , 2013, “ Openfab: A Programmable Pipeline for Multi-Material Fabrication,” ACM Trans. Graph. (TOG), 32(4), p. 136. [CrossRef]
Zhou, M. , Xi, J. , and Yan, J. , 2004, “ Modeling and Processing of Functionally Graded Materials for Rapid Prototyping,” J. Mater. Process. Technol., 146(3), pp. 396–402. [CrossRef]
Zhu, F. , 2004, “ Visualized CAD Modeling and Layered Manufacturing Modeling for Components Made of a Multiphase Perfect Material,” Ph.D. thesis, University of Hong Kong, Hong Kong, China.
Pasko, A. , Adzhiev, V. , Sourin, A. , and Savchenko, V. , 1995, “ Function Representation in Geometric Modeling: Concepts, Implementation and Applications,” Visual Comput., 11(8), pp. 429–446. [CrossRef]
Chiu, W. , and Tan, S. , 2000, “ Multiple Material Objects: From CAD Representation to Data Format for Rapid Prototyping,” Comput.-Aided Des., 32(12), pp. 707–717. [CrossRef]
ASTM, 2012, “ Standard Terminology for Additive Manufacturing Technologies,” ASTM International, West Conshohocken, PA, Standard No. F2792. https://www.astm.org/Standards/F2792.htm
Zhou, C. , Chen, Y. , Yang, Z. , and Khoshnevis, B. , 2013, “ Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography,” Rapid Prototyping J., 19(3), pp. 153–165. [CrossRef]
Huang, P. , Deng, D. , and Chen, Y. , 2013, “ Modeling and Fabrication of Heterogeneous Three-Dimensional Objects Based on Additive Manufacturing,” ASME Paper No. IMECE2013-65724.
Leu, M. C. , Deuser, B. K. , Tang, L. , Landers, R. G. , Hilmas, G. E. , and Watts, J. L. , 2012, “ Freeze-Form Extrusion Fabrication of Functionally Graded Materials,” CIRP Ann.-Manuf. Technol., 61(1), pp. 223–226. [CrossRef]
Khalil, S. , Nam, J. , and Sun, W. , 2005, “ Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds,” Rapid Prototyping J., 11(1), pp. 9–17. [CrossRef]
Joshi, A. , Patnaik, A. , Gangil, B. , and Kumar, S. , 2012, “ Laser Assisted Rapid Manufacturing Technique for the Manufacturing of Functionally Graded Materials,” Students Conference on Engineering and Systems (SCES), Allahabad, India, Mar. 16–18, pp. 1–3.
Kumar, S. , and Pityana, S. , 2011, “ Laser-Based Additive Manufacturing of Metals,” Adv. Mater. Res., 227, pp. 92–95. [CrossRef]
Stratasys , 2018, “ Objet500 connex3 white paper,” Stratasys, Eden Prairie, MN, accessed Jan. 10, 2016, http://web.stratasys.com/rs/objet/images/SSYS-WP-Objet500 20Connex3.pdf
Boparai, K. S. , Boparai, K. S. , Singh, R. , Singh, R. , Singh, H. , and Singh, H. , 2016, “ Development of Rapid Tooling Using Fused Deposition Modeling: A Review,” Rapid Prototyping J., 22(2), pp. 281–299. [CrossRef]
Mumtaz, K. A. , and Hopkinson, N. , 2007, “ Laser Melting Functionally Graded Composition of Waspaloy and Zirconia Powders,” J. Mater. Sci., 42(18), pp. 7647–7656. [CrossRef]
Fessler, J. , Nickel, A. , Link, G. , Prinz, F. , and Fussell, P. , 1997, “ Functional Gradient Metallic Prototypes Through Shape Deposition Manufacturing,” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 11–13, pp. 521–528. https://sffsymposium.engr.utexas.edu/Manuscripts/1997/1997-61-Fessler.pdf
Muller, P. , Mognol, P. , and Hascoët, J.-Y. , 2013, “ Modeling and Control of a Direct Laser Powder Deposition Process for Functionally Graded Materials (FGM) Parts Manufacturing,” J. Mater. Process. Technol., 213(5), pp. 685–692. [CrossRef]
Wilson, J. M. , and Shin, Y. C. , 2012, “ Microstructure and Wear Properties of Laser-Deposited Functionally Graded Inconel 690 Reinforced With TIC,” Surf. Coat. Technol., 207, pp. 517–522. [CrossRef]
Beal, V. , Erasenthiran, P. , Hopkinson, N. , Dickens, P. , and Ahrens, C. , 2006, “ The Effect of Scanning Strategy on Laser Fusion of Functionally Graded h13/Cu Materials,” Int. J. Adv. Manuf. Technol., 30(9–10), pp. 844–852. [CrossRef]
Su, W.-N. , 2002, “ Layered Fabrication of Tool Steel and Functionally Graded Materials With a ND: Yag Pulsed Laser,” Ph.D. thesis, Loughborough University, Loughborough, UK. https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/6923
Mumtaz, K. A. , Erasenthiran, P. , and Hopkinson, N. , 2008, “ High Density Selective Laser Melting of Waspaloy®,” J. Mater. Process. Technol., 195(1–3), pp. 77–87. [CrossRef]
Liu, W. , and DuPont, J. , 2003, “ Fabrication of Functionally Graded Tic/Ti Composites by Laser Engineered Net Shaping,” Scr. Mater., 48(9), pp. 1337–1342. [CrossRef]
Chung, H. , and Das, S. , 2008, “ Functionally Graded Nylon-11/Silica Nanocomposites Produced by Selective Laser Sintering,” Mater. Sci. Eng.: A, 487(1–2), pp. 251–257. [CrossRef]
Hascoët, J. , Muller, P. , and Mognol, P. , 2011, “ Manufacturing of Complex Parts With Continuous Functionally Graded Materials (FGM),” Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 8–10, pp. 557–569. https://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-44-Hascoet.pdf
Sitthi-Amorn, P. , Ramos, J. E. , Wangy, Y. , Kwan, J. , Lan, J. , Wang, W. , and Matusik, W. , 2015, “ Multifab: A Machine Vision Assisted Platform for Multi-Material 3D Printing,” ACM Trans. Graph. (TOG), 34(4), p. 129. [CrossRef]
Perumal, C. V. , and Wigdor, D. , 2016, “ Foldem: Heterogeneous Object Fabrication Via Selective Ablation of Multi-Material Sheets,” CHI Conference on Human Factors in Computing Systems, San Jose, CA, May 7–12, pp. 5765–5775.
Wang, G. , Yao, L. , Wang, W. , Ou, J. , Cheng, C.-Y. , and Ishii, H. , 2016, “ Xprint: A Modularized Liquid Printer for Smart Materials Deposition,” CHI Conference on Human Factors in Computing Systems, San Jose, CA, May 7–12, pp. 5743–5752.
Duro-Royo, J. , Mogas-Soldevila, L. , and Oxman, N. , 2015, “ Flow-Based Fabrication: An Integrated Computational Workflow for Design and Digital Additive Manufacturing of Multifunctional Heterogeneously Structured Objects,” Comput.-Aided Des., 69, pp. 143–154. [CrossRef]
Das, S. , Cormier, D. , and Williams, S. , 2015, “ Potential for Multi-Functional Additive Manufacturing Using Pulsed Photonic Sintering,” Procedia Manuf., 1, pp. 366–377. [CrossRef]
Dey, H. , Ashfaq, M. , Bhaduri, A. , and Rao, K. P. , 2009, “ Joining of Titanium to 304l Stainless Steel by Friction Welding,” J. Mater. Process. Technol., 209(18–19), pp. 5862–5870. [CrossRef]
Kale, G. , Patil, R. , and Gawade, P. , 1998, “ Interdiffusion Studies in Titanium–304 Stainless Steel System,” J. Nucl. Mater., 257(1), pp. 44–50. [CrossRef]
Reichardt, A. , Dillon, R. P. , Borgonia, J. P. , Shapiro, A. A. , McEnerney, B. W. , Momose, T. , and Hosemann, P. , 2016, “ Development and Characterization of Ti-6al-4v to 304l Stainless Steel Gradient Components Fabricated With Laser Deposition Additive Manufacturing,” Mater. Des., 104, pp. 404–413.
Duballet, R. , Gosselin, C. , and Roux, P. , 2015, “ Additive Manufacturing and Multi-Objective Optimization of Graded Polystyrene Aggregate Concrete Structures,” Modelling Behaviour, Springer, Cham, Switzerland, pp. 225–235. [CrossRef] [PubMed] [PubMed]
Gupta, A. , and Talha, M. , 2015, “ Recent Development in Modeling and Analysis of Functionally Graded Materials and Structures,” Prog. Aerosp. Sci., 79, pp. 1–14. [CrossRef]
Li, M. , Tian, X. , and Chen, X. , 2009, “ A Brief Review of Dispensing-Based Rapid Prototyping Techniques in Tissue Scaffold Fabrication: Role of Modeling on Scaffold Properties Prediction,” Biofabrication, 1(3), p. 032001. [CrossRef] [PubMed]
Leukers, B. , Gülkan, H. , Irsen, S. H. , Milz, S. , Tille, C. , Schieker, M. , and Seitz, H. , 2005, “ Hydroxyapatite Scaffolds for Bone Tissue Engineering Made by 3D Printing,” J. Mater. Sci.: Mater. Med., 16(12), pp. 1121–1124. [CrossRef] [PubMed]
Cox, S. C. , Thornby, J. A. , Gibbons, G. J. , Williams, M. A. , and Mallick, K. K. , 2015, “ 3D Printing of Porous Hydroxyapatite Scaffolds Intended for Use in Bone Tissue Engineering Applications,” Mater. Sci. Eng.: C, 47, pp. 237–247. [CrossRef]
Doubrovski, E. , Tsai, E. , Dikovsky, D. , Geraedts, J. , Herr, H. , and Oxman, N. , 2015, “ Voxel-Based Fabrication Through Material Property Mapping: A Design Method for Bitmap Printing,” Comput.-Aided Des., 60, pp. 3–13. [CrossRef]
Willis, K. , Brockmeyer, E. , Hudson, S. , and Poupyrev, I. , 2012, “ Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices,” 25th Annual ACM Symposium on User Interface Software and Technology (UIST), Cambridge, MA, Oct. 7–10, pp. 589–598.
Wang, L. , Lau, J. , Thomas, E. L. , and Boyce, M. C. , 2011, “ Co-Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation,” Adv. Mater., 23(13), pp. 1524–1529. [CrossRef] [PubMed]
Skouras, M. , Thomaszewski, B. , Coros, S. , Bickel, B. , and Gross, M. , 2013, “ Computational Design of Actuated Deformable Characters,” ACM Trans. Graph. (TOG), 32(4), p. 82. [CrossRef]
Bartlett, N. W. , Tolley, M. T. , Overvelde, J. T. , Weaver, J. C. , Mosadegh, B. , Bertoldi, K. , Whitesides, G. M. , and Wood, R. J. , 2015, “ A 3D-Printed, Functionally Graded Soft Robot Powered by Combustion,” Science, 349(6244), pp. 161–165. [CrossRef] [PubMed]
Studart, A. R. , 2016, “ Additive Manufacturing of Biologically-Inspired Materials,” Chem. Soc. Rev., 45(2), pp. 359–376. [CrossRef] [PubMed]
Kumar, V. , and Dutta, D. , 1998, “ An Approach to Modeling & Representation of Heterogeneous Objects,” ASME J. Mech. Des., 120(4), pp. 659–667. [CrossRef]
Rossignac, J. R. , and Requicha, A. A. , 1999, “ Solid Modeling,” Georgia Institute of Technology, Atlanta, GA, Technical Report No. GIT-GVU-99-09.
Requicha, A. A. , 1980, Representations of Rigid Solid Objects, Springer, Berlin. [CrossRef]
Kou, X. , 2006, “ Computer-Aided Design of Heterogeneous Objects,” Ph.D. thesis, University of Hong Kong, Hong Kong, China. https://dl.acm.org/citation.cfm?id=1237090
Morgan, O. , Upreti, K. , Subbarayan, G. , and Anderson, D. , 2015, “ Higeom: A Symbolic Framework for a Unified Function Space Representation of Trivariate Solids for Isogeometric Analysis,” Comput.-Aided Des., 65, pp. 34–50. [CrossRef]
Shah, J. J. , and Mäntylä, M. , 1995, Parametric and Feature-Based CAD/CAM: Concepts, Techniques, and Applications, Wiley, New York.
Biswas, A. , Shapiro, V. , and Tsukanov, I. , 2004, “ Heterogeneous Material Modeling With Distance Fields,” Comput. Aided Geometric Des., 21(3), pp. 215–242. [CrossRef]
Bhashyam, S. , Hoon Shin, K. , and Dutta, D. , 2000, “ An Integrated CAD System for Design of Heterogeneous Objects,” Rapid Prototyping J., 6(2), pp. 119–135. [CrossRef]
Shin, K.-H. , and Dutta, D. , 2001, “ Constructive Representation of Heterogeneous Objects,” ASME J. Comput. Inf. Sci. Eng., 1(3), pp. 205–217. [CrossRef]
Wu, X. , Liu, W. , and Wang, M. Y. , 2008, “ A CAD Modeling System for Heterogeneous Object,” Adv. Eng. Software, 39(5), pp. 444–453. [CrossRef]
Kou, X. , and Tan, S. , 2012, “ Microstructural Modelling of Functionally Graded Materials Using Stochastic Voronoi Diagram and b-Spline Representations,” Int. J. Comput. Integr. Manuf., 25(2), pp. 177–188. [CrossRef]
Rosen, D. W. , Jeong, N. , and Wang, Y. , 2013, “ A Method for Reverse Engineering of Material Microstructure for Heterogeneous CAD,” Comput.-Aided Des., 45(7), pp. 1068–1078. [CrossRef]
Liu, X. , and Shapiro, V. , 2015, “ Random Heterogeneous Materials Via Texture Synthesis,” Comput. Mater. Sci., 99, pp. 177–189. [CrossRef]
Latief, F. , Biswal, B. , Fauzi, U. , and Hilfer, R. , 2010, “ Continuum Reconstruction of the Pore Scale Microstructure for Fontainebleau Sandstone,” Phys. A: Stat. Mech. Appl., 389(8), pp. 1607–1618. [CrossRef]
Ghosh, S. , and Dimiduk, D. M. , 2011, Computational Methods for Microstructure-Property Relationships, Springer, New York. [CrossRef]
McDowell, D. , Ghosh, S. , and Kalidindi, S. , 2011, “ Representation and Computational Structure-Property Relations of Random Media,” JOM J. Miner., Met. Mater. Soc., 63(3), pp. 45–51. [CrossRef]
Li, D. , 2014, “ Review of Structure Representation and Reconstruction on Mesoscale and Microscale,” JOM, 66(3), pp. 444–454. [CrossRef]
Bostanabad, R. , Bui, A. T. , Xie, W. , Apley, D. W. , and Chen, W. , 2016, “ Stochastic Microstructure Characterization and Reconstruction Via Supervised Learning,” Acta Mater., 103, pp. 89–102. [CrossRef]
Liu, H. , 2000, “ Algorithms for Design and Interrogation of Functionally Graded Material Solids,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA. https://dspace.mit.edu/handle/1721.1/9044
Jackson, T. R. , 2000, “ Analysis of Functionally Graded Material Object Representation Methods,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA. https://dspace.mit.edu/handle/1721.1/9032
Hughes, J. F. , van Dam, A. , McGuire, M. , Sklar, D. F. , Foley, J. D. , Feiner, S. K. , and Akeley, K. , 2013, Computer Graphics: Principles and Practice, 3rd ed., Pearson Education, Upper saddle river, NJ.
Adzhiev, V. , Kartasheva, E. , Kunii, T. , Pasko, A. , and Schmitt, B. , 2002, “ Cellular-Functional Modeling of Heterogeneous Objects,” Seventh ACM Symposium on Solid Modeling and Applications (SMA), Saarbrücken, Germany, June 17–21, pp. 192–203.
Park, S.-M. , Crawford, R. H. , and Beaman, J. J. , 2001, “ Volumetric Multi-Texturing for Functionally Gradient Material Representation,” Sixth ACM Symposium on Solid Modeling and Applications (SMA), Ann Arbor, MI, June 6–8, pp. 216–224.
Kumar, V. , and Dutta, D. , 1997, “ An Approach to Modeling Multi-Material Objects,” Fourth ACM Symposium on Solid Modeling and Applications (SMA), Atlanta, GA, May 14–16, pp. 336–345.
Chandru, V. , Manohar, S. , and Prakash, C. E. , 1995, “ Voxel-Based Modeling for Layered Manufacturing,” Comput. Graph. Appl., 15(6), pp. 42–47. [CrossRef]
Shin, K.-H. , 2002, “ Representation and Process Planning for Layered Manufacturing of Heterogeneous Objects,” Ph.D. thesis, University of Michigan, Ann Arbor, MI. https://deepblue.lib.umich.edu/handle/2027.42/130555
Hopkinson, N. , Hague, R. , and Dickens, P. , 2006, Rapid Manufacturing: An Industrial Revolution for the Digital Age, Wiley, West Sussex, UK.
You, Y. , Kou, X. , and Tan, S. , 2015, “ Adaptive Meshing for Finite Element Analysis of Heterogeneous Materials,” Comput.-Aided Des., 62, pp. 176–189. [CrossRef]
Kou, X. , and Tan, S. , 2007, “ Heterogeneous Object Modeling: A Review,” Comput.-Aided Des., 39(4), pp. 284–301. [CrossRef]
Kou, X. , Tan, S. , and Sze, W. , 2006, “ Modeling Complex Heterogeneous Objects With Non-Manifold Heterogeneous Cells,” Comput.-Aided Des., 38(5), pp. 457–474. [CrossRef]
Keen, A. A. , 1993, “ A Non-Manifold Shape Representation,” Ph.D. thesis, Texas A & M University, College Station, TX.
Weiler, K. , 1988, “ The Radial Edge Structure: A Topological Representation for Non-Manifold Geometric Boundary Modeling,” Geometric Modeling CAD Applications, Elsevier Science, North Holland, The Netherlands, pp. 3–36.
Wang, C. C. , Leung, Y.-S. , and Chen, Y. , 2010, “ Solid Modeling of Polyhedral Objects by Layered Depth-Normal Images on the GPU,” Comput.-Aided Des., 42(6), pp. 535–544. [CrossRef]
Pasko, A. , Adzhiev, V. , Schmitt, B. , and Schlick, C. , 2001, “ Constructive Hypervolume Modeling,” Graphical Models, 63(6), pp. 413–442. [CrossRef]
Samanta, K. , and Koc, B. , 2008, “ Feature-Based Material Blending for Heterogeneous Object Modeling,” Heterogeneous Objects Modelling and Applications, Springer, Berlin, pp. 142–166. [CrossRef]
Kou, X. , and Tan, S. , 2005, “ A Hierarchical Representation for Heterogeneous Object Modeling,” Comput.-Aided Des., 37(3), pp. 307–319. [CrossRef]
Gupta, V. , and Tandon, P. , 2015, “ Heterogeneous Object Modeling With Material Convolution Surfaces,” Comput.-Aided Des., 62, pp. 236–247. [CrossRef]
Kou, X. , and Tan, S. , 2008, “ Heterogeneous Object Design: An Integrated Cax Perspective,” Heterogeneous Objects Modelling and Applications, Springer, Berlin, pp. 42–59. [CrossRef]
Gupta, V. , Bajpai, V. , and Tandon, P. , 2014, “ Slice Generation and Data Retrieval Algorithm for Rapid Manufacturing of Heterogeneous Objects,” Comput.-Aided Des. Appl., 11(3), pp. 255–262. [CrossRef]
Jin, X. , and Tai, C.-L. , 2002, “ Analytical Methods for Polynomial Weighted Convolution Surfaces With Various Kernels,” Comput. Graph., 26(3), pp. 437–447. [CrossRef]
Liu, H. , Maekawa, T. , Patrikalakis, N. , Sachs, E. , and Cho, W. , 2004, “ Methods for Feature-Based Design of Heterogeneous Solids,” Comput.-Aided Des., 36(12), pp. 1141–1159. [CrossRef]
Rvachev, V. L. , Sheiko, T. I. , Shapiro, V. , and Tsukanov, I. , 2001, “ Transfinite Interpolation Over Implicitly Defined Sets,” Comput. Aided Geom. Des., 18(3), pp. 195–220. [CrossRef]
Shepard, D. , 1968, “ A Two-Dimensional Interpolation Function for Irregularly-Spaced Data,” 23rd ACM National Conference, New York, Aug. 27–29, pp. 517–524.
Kou, X. , and Tan, S. , 2009, “ Robust and Efficient Algorithms for Rapid Prototyping of Heterogeneous Objects,” Rapid Prototyping J., 15(1), pp. 5–18. [CrossRef]
Jaiswal, P. , Rai, R. , and Nelaturi, S. , 2016, “Hysteresis in Interoperability: Workflows Involving Multiple Representations of 3D Models,” ASME Paper No. DETC2016-59700.
Hoffmann, C. M. , Shapiro, V. , and Srinivasan, V. , 2011, “ Geometric Interoperability for Resilient Manufacturing,” Purdue University, West Lafayette, IN, Technical Report No. TR-11-015.
Hoffmann, C. , Shapiro, V. , and Srinivasan, V. , 2014, “ Geometric Interoperability Via Queries,” Comput.-Aided Des., 46, pp. 148–159. [CrossRef]
Kulkarni, P. , Marsan, A. , and Dutta, D. , 2000, “ A Review of Process Planning Techniques in Layered Manufacturing,” Rapid Prototyping J., 6(1), pp. 18–35. [CrossRef]
Cheng, W. , Fuh, J. , Nee, A. , Wong, Y. , Loh, H. , and Miyazawa, T. , 1995, “ Multi-Objective Optimization of Part-Building Orientation in Stereolithography,” Rapid Prototyping J., 1(4), pp. 12–23. [CrossRef]
Zhang, X. , Le, X. , Panotopoulou, A. , Whiting, E. , and Wang, C. C. , 2015, “ Perceptual Models of Preference in 3D Printing Direction,” ACM Trans. Graph. (TOG), 34(6), p. 215. [CrossRef]
Shin, K.-H. , Natu, H. , Dutta, D. , and Mazumder, J. , 2003, “ A Method for the Design and Fabrication of Heterogeneous Objects,” Mater. Des., 24(5), pp. 339–353. [CrossRef]
Xu, A. , and Shaw, L. L. , 2005, “ Equal Distance Offset Approach to Representing and Process Planning for Solid Freeform Fabrication of Functionally Graded Materials,” Comput.-Aided Des., 37(12), pp. 1308–1318. [CrossRef]
Muller, P. , Hascoet, J.-Y. , and Mognol, P. , 2014, “ Toolpaths for Additive Manufacturing of Functionally Graded Materials (FGM) Parts,” Rapid Prototyping J., 20(6), pp. 511–522. [CrossRef]
Birman, V. , and Byrd, L. W. , 2007, “ Modeling and Analysis of Functionally Graded Materials and Structures,” ASME Appl. Mech. Rev., 60(5), pp. 195–216. [CrossRef]
Nelaturi, S. , and Shapiro, V. , 2015, “ Representation and Analysis of Additively Manufactured Parts,” Comput.-Aided Des., 67(C), pp. 13–23. [CrossRef]
Moser, D. , Fish, S. , Beaman, J. , and Murthy, J. , 2014, “ Multi-Layer Computational Modeling of Selective Laser Sintering Processes,” ASME Paper No. IMECE2014-37535.
Ma, L. , Fong, J. , Lane, B. , Moylan, S. , Filliben, J. , Heckert, A. , and Levine, L. , 2015, “ Using Design of Experiments in Finite Element Modeling to Identify Critical Variables for Laser Powder Bed Fusion,” International Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 10–12, pp. 219–228. https://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-18-Ma.pdf
Lopez, F. , Witherell, P. , and Lane, B. , 2016, “ Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models,” ASME J. Mech. Des., 138(11), p. 114502. [CrossRef]
Bian, L. , Thompson, S. M. , and Shamsaei, N. , 2015, “ Mechanical Properties and Microstructural Features of Direct Laser-Deposited Ti-6al-4v,” JOM, 67(3), pp. 629–638. [CrossRef]
Jackson, T. R. , Cho, W. , Patrikalakis, N. M. , and Sachs, E. M. , 2002, “ Memory Analysis of Solid Model Representations for Heterogeneous Objects,” ASME J. Comput. Inf. Sci. Eng., 2(1), pp. 1–10. [CrossRef]
Jaiswal, P. , Bajad, A. B. , Nanjundaswamy, V. G. , Verma, A. , and Rai, R. , 2013, “ Creative Exploration of Scaled Product Family 3D Models Using Gesture Based Conceptual Computer Aided Design (C-CAD) Tool,” ASME Paper No. DETC2013-12279.
Nanjundaswamy, V. , Kulkarni, A. , Chen, Z. , Jaiswal, P. , Verma, A. , and Rai, R. , 2013, “ Intuitive 3D Computer-Aided Design (CAD) System With Multimodal Interfaces,” ASME Paper No. DETC2013-12277.
Shankar, S. S. , and Rai, R. , 2014, “ Human Factors Study on the Usage of BCI Headset for 3D CAD Modeling,” Comput.-Aided Des., 54, pp. 51–55. [CrossRef]
Jain, A. , Thormählen, T. , Ritschel, T. , and Seidel, H.-P. , 2012, “ Material Memex: Automatic Material Suggestions for 3D Objects,” ACM Trans. Graph. (TOG), 31(6), p. 143. [CrossRef]
Jaiswal, P. , Huang, J. , and Rai, R. , 2015, “ Assembly-Based Conceptual 3D Modeling With Unlabeled Components Using Probabilistic Factor Graph,” Comput.-Aided Des., 74, pp. 45–54. [CrossRef]
Zhang, B. , and Rai, R. , 2014, “ Materials Follow Form and Function: Probabilistic Factor Graph Approach for Automatic Material Assignments to 3D Objects,” ASME Paper No. DETC2014-34064.
Chakraborty, A. , Gopalakrishnan, S. , and Reddy, J. , 2003, “ A New Beam Finite Element for the Analysis of Functionally Graded Materials,” Int. J. Mech. Sci., 45(3), pp. 519–539. [CrossRef]
Li, X.-F. , 2008, “ A Unified Approach for Analyzing Static and Dynamic Behaviors of Functionally Graded Timoshenko and Euler–Bernoulli Beams,” J. Sound Vib., 318(4–5), pp. 1210–1229. [CrossRef]
Chakraborty, A. , and Gopalakrishnan, S. , 2003, “ A Spectrally Formulated Finite Element for Wave Propagation Analysis in Functionally Graded Beams,” Int. J. Solids Struct., 40(10), pp. 2421–2448. [CrossRef]
Pan, E. , 2003, “ Exact Solution for Functionally Graded Anisotropic Elastic Composite Laminates,” J. Compos. Mater., 37(21), pp. 1903–1920. [CrossRef]
Soldatos, K. P. , 2004, “ Complex Potential Formalisms for Bending of Inhomogeneous Monoclinic Plates Including Transverse Shear Deformation,” J. Mech. Phys. Solids, 52(2), pp. 341–357. [CrossRef]
Vel, S. S. , and Batra, R. , 2002, “ Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates,” AIAA J., 40(7), pp. 1421–1433. [CrossRef]
Jabbari, M. , Sohrabpour, S. , and Eslami, M. , 2002, “ Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads,” Int. J. Pressure Vessels Piping, 79(7), pp. 493–497. [CrossRef]
Pelletier, J. L. , and Vel, S. S. , 2006, “ An Exact Solution for the Steady-State Thermoelastic Response of Functionally Graded Orthotropic Cylindrical Shells,” Int. J. Solids Struct., 43(5), pp. 1131–1158. [CrossRef]
Della Croce, L. , and Venini, P. , 2004, “ Finite Elements for Functionally Graded Reissner–Mindlin Plates,” Comput. Methods Appl. Mech. Eng., 193(9–11), pp. 705–725. [CrossRef]
Bhangale, R. K. , Ganesan, N. , and Padmanabhan, C. , 2006, “ Linear Thermoelastic Buckling and Free Vibration Behavior of Functionally Graded Truncated Conical Shells,” J. Sound Vib., 292(1–2), pp. 341–371. [CrossRef]
Gao, W. , Zhang, Y. , Ramanujan, D. , Ramani, K. , Chen, Y. , Williams, C. B. , Wang, C. C. , Shin, Y. C. , Zhang, S. , and Zavattieri, P. D. , 2015, “ The Status, Challenges, and Future of Additive Manufacturing in Engineering,” Comput.-Aided Des., 69, pp. 65–89. [CrossRef]
Moore, J. P. , and Williams, C. B. , 2008, “ Fatigue Characterization of 3D Printed Elastomer Material,” 19th Annual International Solid Freeform Fabrication Symposium (SFF), Austin, TX, Aug. 4–6, pp. 641–655. https://pdfs.semanticscholar.org/8065/b9420b6541f1d984ad1bdcc6ca1b72d84266.pdf
Elishakoff, I. , Gentilini, C. , and Viola, E. , 2005, “ Three-Dimensional Analysis of an All-Round Clamped Plate Made of Functionally Graded Materials,” Acta Mech., 180(1–4), pp. 21–36. [CrossRef]
Huang, J. , Fadel, G. M. , Blouin, V. Y. , and Grujicic, M. , 2002, “ Bi-Objective Optimization Design of Functionally Gradient Materials,” Mater. Des., 23(7), pp. 657–666. [CrossRef]
Yang, J. , Liew, K. , Wu, Y. , and Kitipornchai, S. , 2006, “ Thermo-Mechanical Post-Buckling of FGM Cylindrical Panels With Temperature-Dependent Properties,” Int. J. Solids Struct., 43(2), pp. 307–324. [CrossRef]
Praveen, G. , and Reddy, J. , 1998, “ Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates,” Int. J. Solids Struct., 35(33), pp. 4457–4476. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Manufacturing techniques for FGM objects: (a) multimaterial SL process based on bottom-up projection [42], (b) triple-extruder mechanism design [44], (c) multinozzle deposition for constructing of three-dimensional (3D) scaffolds system setup [45], (d) schematic diagram of LENS technique [46], (e) schematic diagram of SLM technique [47], and (f) 3D printed interlocking color rings with Connex 3 using cyan-magenta-yellow palette [48]

Grahic Jump Location
Fig. 2

Three different hb-sets generated by a material union operation [87]

Grahic Jump Location
Fig. 3

Model hierarchy in the constructive representation [87]

Grahic Jump Location
Fig. 4

An example of (a) an object with complex material distribution, (b) the assembly model of the object, and (c) the cellular model of the object [107]

Grahic Jump Location
Fig. 5

Examples of Cartesian material definition and objects created using those definitions

Grahic Jump Location
Fig. 6

Partial cross-sectional visualization of material distribution functions defined in (a) cylindrical and (b) spherical coordinate systems

Grahic Jump Location
Fig. 7

The material convolution surfaces based approach for FGM modeling [115]: (a) Definitions: Object P; Heterogeneous enclosure A; and Homogeneous enclosure H, (b) the effect of different material potential functions on material-distribution, (c) material modeling with convolution surface-based material primitives (i) Point; (ii) Straight line; (iii) Spline; and (iv) Plane. Note: M is Grading enclosure.

Grahic Jump Location
Fig. 8

Hierarchy-based FGM object modeling [114]: (a) One-dimensional heterogeneous features, (b) two-dimensional heterogeneous features, and (c) extruded heterogeneous cylinder

Grahic Jump Location
Fig. 9

HFT structure for 3D heterogeneous extrusion solid [114]

Grahic Jump Location
Fig. 10

Representation of classification of types of slices [59]

Grahic Jump Location
Fig. 11

Process planning of functionally graded objects: (a) sub-region Sn,n+1 between two contours, (b) filling toolpaths of the sub-region, and (c) the filled region with the rendering effect. The paths 1-5 in (b) represent the filling sequence and (●) stands for the starting and/or ending point for the filling paths [130].

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In