Research Papers

Automated Coordinate Measuring Machine Inspection Planning Knowledge Capture and Formalization

[+] Author and Article Information
Dimitrios Anagnostakis

School of Engineering and Physical Sciences,
Heriot-Watt University,
Riccarton Campus,
Edinburgh EH14 4AS, UK
e-mail: da178@hw.ac.uk

James Ritchie

School of Engineering and Physical Sciences,
Heriot-Watt University,
Riccarton Campus,
Edinburgh EH14 4AS, UK
e-mail: J.M.Ritchie@hw.ac.uk

Theodore Lim

School of Engineering and Physical Sciences,
Heriot-Watt University,
Riccarton Campus,
Edinburgh EH14 4AS, UK
e-mail: T.Lim@hw.ac.uk

Raymond Sung

Renishaw plc,
Research Park North,
Edinburgh EH14 4AP, UK
e-mail: Ray.Sung@Renishaw.com

Richard Dewar

Renishaw plc,
Research Park North,
Edinburgh EH14 4AP, UK
e-mail: Rick.Dewar@Renishaw.com

Contributed by the Computers and Information Division of ASME for publication in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript received October 15, 2017; final manuscript received January 23, 2018; published online June 12, 2018. Assoc. Editor: Jitesh H. Panchal.

J. Comput. Inf. Sci. Eng 18(3), 031005 (Jun 12, 2018) (12 pages) Paper No: JCISE-17-1228; doi: 10.1115/1.4039194 History: Received October 15, 2017; Revised January 23, 2018

Capturing the strategy followed during a coordinate measuring machine (CMM) inspection planning session has been an extremely challenging issue due to the time-consuming nature of traditional methods, such as interviewing experts and technical documents data mining. This paper presents a methodology demonstrating how a motion capture-based system can facilitate direct and nonintrusive CMM operator logging for capturing planning strategies and representing in knowledge formats. With the use of recorded motion data, embedded knowledge and expertise can be captured automatically and formalized in various formats such as motion trajectory graphs, inspection plans, integrated definition (IDEF) model diagrams, and other representations. Additionally, a part program can be generated for driving a CMM to execute component measurement. The system's outputs can be used to help understand how a CMM inspection strategy is planned, as well as training aids for inexperienced operators and the rapid generation of part programs.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Martínez-Pellitero, S. , Barreiro, J. , Cuesta, E. , and Raya, F. , 2016, “Frame for Automatizing Inspection Planning Strategies in Coordinate Metrology: Macro Plan Case,” J. Manuf. Technol. Res., 8(3–4), pp. 1–23.
Anagnostakis, D. , Ritchie, J. , Lim, T. , Sivanathan, A. , Dewar, R. , Sung, R. , Bosch, F. , and Carozza, L. , 2016, “Knowledge Capture in CMM Inspection Planning: Barriers and Challenges,” Procedia CIRP, 52, pp. 216–221. [CrossRef]
Barreiro, J. , Martinez, S. , Cuesta, E. , and Alvarez, B. , 2010, “Conceptual Principles and Ontology for a KBE Implementation in Inspection Planning,” Int. J. Mechatronics Manuf. Syst., 3(5/6), p. 451.
Anagnostakis, D. , Ritchie, J. , Lim, T. , Sung, R. , and Dewar, R. , 2017, “A Virtual CMM Inspection Tool for Capturing Planning Strategies,” ASME Paper No. DETC2017-67519.
Lim, C. P. , and Menq, C.-H. , 1994, “CMM Feature Accessibility and Path Generation,” Int. J. Prod. Res., 32(3), pp. 597–618. [CrossRef]
Ziemian, C. W. , and Medeiros, D. J. , 1997, “Automated Feature Accessibility Algorithm for Inspection on a Coordinate Measuring Machine,” Int. J. Prod. Res., 35(10), pp. 2839–2856. [CrossRef]
Limaiem, A. , and EIMaraghy, H. A. , 2000, “Integrated Accessibility Analysis and Measurement Operations Sequencing for CMMs,” J. Manuf. Syst., 19(2), pp. 83–93. [CrossRef]
Vafaeesefat, A. , and Elmaraghy, H. A. , 2000, “Automated Accessibility Analysis and Measurement Clustering for CMMs,” Int. J. Prod. Res., 38(10), pp. 2215–2231. [CrossRef]
Kweon, S. , and Medeiros, D. J. , 1998, “Part Orientations for CMM Inspection Using Dimensioned Visibility Maps,” Comput. Des., 30(9), pp. 741–749.
Beg, J. , and Shunmugam, M. S. , 2003, “Application of Fuzzy Logic in the Selection of Part Orientation and Probe Orientation Sequencing for Prismatic Parts,” Int. J. Prod. Res., 41(12), pp. 2799–2815. [CrossRef]
Osawa, S. , Busch, K. , Franke, M. , and Schwenke, H. , 2005, “Multiple Orientation Technique for the Calibration of Cylindrical Workpieces on CMMs,” Precis. Eng., 29(1), pp. 56–64. [CrossRef]
Elkott, D. F. , Elmaraghy, H. A. , and Elmaraghy, W. H. , 2002, “Automatic Sampling for CMM Inspection Planning of Free-Form Surfaces,” Int. J. Prod. Res., 40(11), pp. 2653–2676. [CrossRef]
Jiang, R. S. , Wang, W. H. , Zhang, D. H. , and Wang, Z. Q. , 2016, “A Practical Sampling Method for Profile Measurement of Complex Blades,” Measurement, 81, pp. 57–65. [CrossRef]
Zhang, Y. , Nee, A. Y. C. , Fuh, J. Y. H. , Neo, K. , and Loy, H. , 1996, “A Neural Network Approach to Determining Optimal Inspection Sampling Size for CMM,” Comput. Integr. Manuf. Syst., 9(3), pp. 161–169. [CrossRef]
Weckenmann, A. , Eitzert, H. , Garmer, M. , and Weber, H. , 1995, “Functionality-Oriented Evaluation and Sampling Strategy in Coordinate Metrology,” Precis. Eng., 17(4), pp. 244–252. [CrossRef]
Yu, M. , Zhang, Y. , Li, Y. , and Zhang, D. , 2013, “Adaptive Sampling Method for Inspection Planning on CMM for Free-Form Surfaces,” Int. J. Adv. Manuf. Technol., 67(9–12), pp. 1967–1975. [CrossRef]
Yau, H.-T. , and Menq, C.-H. , 1995, “Automated CMM Path Planning for Dimensional Inspection of Dies and Molds Having Complex Surfaces,” Int. J. Mach. Tools Manuf., 35(6), pp. 861–876. [CrossRef]
Albuquerque, V. A. , Liou, F. W. , and Mitchell, O. R. , 2000, “Inspection Point Placement and Path Planning Algorithms for Automatic CMM Inspection,” Int. J. Comput. Integr. Manuf., 13(2), pp. 107–120. [CrossRef]
Han, Z. , Liu, S. , Yu, F. , Zhang, X. , and Zhang, G. , 2017, “A 3D Measuring Path Planning Strategy for Intelligent CMMs Based on an Improved Ant Colony Algorithm,” Int. J. Adv. Manuf. Technol., 93(1–4), pp. 1487–1497.
Ainsworth, I. , Ristic, M. , and Brujic, D. , 2000, “CAD-Based Measurement Path Planning for Free-Form Shapes Using Contact Probes,” Int. J. Adv. Manuf. Technol., 16(1), pp. 23–31. [CrossRef]
Negnevitsky, M. , 2005, Artificial Intelligence: A Guide to Intelligent Systems, Pearson Education, Essex, UK. [PubMed] [PubMed]
Hammad Mian, S. , and Al-Ahmari, A. , 2014, “New Developments in Coordinate Measuring Machines for Manufacturing Industries,” Int. J. Metrol. Qual. Eng., 5(1), p. 101. [CrossRef]
ElMaraghy, H. , and Gu, P. , 1987, “Expert Inspection Planning System,” Ann. CIRP, 36(1), pp. 85–89. [CrossRef]
Gu, P. , 1994, “A Knowledge-Based Inspection Process Planning System for Coordinate Measuring Machines,” J. Intell. Manuf., 5(5), pp. 351–363. [CrossRef]
Hwang, I. , Lee, H. , and Ha, S. , 2002, “Hybrid Neuro-Fuzzy Approach to the Generation of Measuring Points for Knowledge-Based Inspection Planning,” Int. J. Prod. Res., 40(11), pp. 2507–2520. [CrossRef]
Hussien, H. A. , Youssef, A. M. , and Shoukry, M. K. , 2012, “Automated Inspection Planning System for CMMs,” International Conference on Engineering and Technology (ICET), Cairo, Egypt, Oct. 11–12.
Kamrani, A. , Abouel Nasr, E. , Al-Ahmari, A. , Abdulhameed, O. , and Mian, S. H. , 2014, “Feature-Based Design Approach for Integrated CAD and Computer-Aided Inspection Planning,” Int. J. Adv. Manuf. Technol., 76(9–12), pp. 2159–2183.
Stojadinovic, S. M. , Majstorovic, V. D. , Durakbasa, N. M. , and Sibalija, T. V. , 2016, “Towards an Intelligent Approach for CMM Inspection Planning of Prismatic Parts,” J. Meas., 92, pp. 326–339. [CrossRef]
Hu, Y. , Yang, Q. , and Wei, P. , 2009, “Development of a Novel Virtual Coordinate Measuring Machine,” IEEE Instrumentation and Measurement Technology Conference (I2MTC), Singapore, May 5–7, pp. 230–233.
Stouffer, K. , and Horst, J. , 2001, “Controller Driven VRML Animation of the Next Generation Inspection System (NGIS) Real-Time Controller,” Proc. SPIE, 4191, pp. 31–37.
Calonego, N. , Kirner, C. , Kirner, T. , and Abackerli, A. J. , 2004, “Implementation of a Virtual Environment for Interacting With a Coordinate Measuring Machine,” IEEE International Conference on Virtual Environments, Human Computer Interface and Measurement Systems (VECIMS 2004), Boston, MA, July 12–14, pp. 125–130.
Chen, Y. H. , Yang, Z. Y. , and Wang, Y. Z. , 2005, “Haptic Modeling for a Virtual Coordinate Measuring Machine,” Int. J. Prod. Res., 43(9), pp. 1861–1878. [CrossRef]
Wang, Y. , Chen, Y. , Zhang, W. , Liu, D. , and Zhang, R. , 2009, “Accessibility Analysis for CMM Inspection Planning by Means of Haptic Device and STL Representation,” IEEE International Conference Virtual Environments, Human-Computer Interfaces and Measurements Systems (VECIMS 2009), Hong Kong, China May 11–13, pp. 174–178.
Hu, Y. , Yang, Q. , and Sun, X. , 2012, “Design, Implementation, and Testing of Advanced Virtual Coordinate-Measuring Machines,” IEEE Trans. Instrum. Meas., 61(5), pp. 1368–1376. [CrossRef]
Wang, Y. , Guo, X. , Sun, K. , and Chen, Y. , 2012, “Study on Virtual Coordinate Measuring Machine Based on Augmented Virtuality,” IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), Tianjin, China, July 2–4, pp. 97–102.
Zhao, L. , and Peng, Q. , 2010, “Development of a CMM Training System in Virtual Environments,” ASME Paper No. DETC2010-28274.
Martínez-Pellitero, S. , Barreiro, J. , Cuesta, E. , and Álvarez, B. J. , 2011, “A New Process-Based Ontology for KBE System Implementation: Application to Inspection Process Planning,” Int. J. Adv. Manuf. Technol., 57(1–4), pp. 325–339. [CrossRef]
Martínez, S. , Barreiro, J. , Cuesta, E. , Álvarez, B. J. , and González, D. , 2012, “Methodology for Identifying and Representing Knowledge in the Scope of CMM Inspection Resource Selection,” AIP Conf. Proc., 1431, pp. 250–257.
Martínez-Pellitero, S. , Barreiro, J. , Cuesta, E. , and Fernández-Abia, A. I. , 2015, “KBE Rules Oriented to Resources Management in Coordinates Inspection by Contact,” J. Manuf. Syst., 37(Pt. 1), pp. 149–163. [CrossRef]
Martínez-Pellitero, S. , Barreiro, J. , Cuesta, E. , and Fernández-Abia, A. I. , 2017, “Knowledge Base Model for Automatic Probe Orientation and Configuration Planning With CMMs,” Rob. Comput.-Integr. Manuf., 49, pp. 285–300. [CrossRef]
Ritchie, J. M. , Dewar, R. G. , Robinson, G. , Simmons, J. E. L. , and Ng, F. M. , 2006, “The Role of Non-Intrusive Operator Logging to Support the Analysis and Generation of Product Engineering Data Using Immersive VR,” Virtual Phys. Prototyping, 1(2), pp. 117–134. [CrossRef]
Ritchie, J. M. , Dewar, R. G. , and Simmons, J. E. L. , 1999, “The Generation and Practical Use of Plans for Manual Assembly Using Immersive Virtual Reality,” Proc. Inst. Mech. Eng., Part B, 213(5), pp. 461–474. [CrossRef]
Sung, R. C. W. , Ritchie, J. M. , Robinson, G. , Day, P. N. , Corney, J. R. , and Lim, T. , 2009, “Automated Design Process Modelling and Analysis Using Immersive Virtual Reality,” Comput. Des., 41(12), pp. 1082–1094.
Sung, R. , Ritchie, J. M. , Rea, H. J. , and Corney, J. , 2011, “Automated Design Knowledge Capture and Representation in Single-User CAD Environments,” J. Eng. Des., 22(7), pp. 487–503. [CrossRef]
Fletcher, C. , Ritchie, J. , Lim, T. , and Sung, R. , 2013, “The Development of an Integrated Haptic VR Machining Environment for the Automatic Generation of Process Plans,” Comput. Ind., 64(8), pp. 1045–1060. [CrossRef]
Sivanathan, A. , Lim, T. , Ritchie, J. , Sung, R. , Kosmadoudi, Z. , and Liu, Y. , 2013, “The Application of Ubiquitous Multimodal Synchronous Data Capture in CAD,” Comput. Aided Des., 59, pp. 176–191. [CrossRef]
Leu, M. C. , ElMaraghy, H. A. , Nee, A. Y. C. , Khim, S. , Lanzetta, M. , Putz, M. , Zhu, W. , and Bernard, A. , 2013, “CAD Model Based Virtual Assembly Simulation, Planning and Training,” CIRP Ann. Manuf. Technol., 62(2), pp. 799–822. [CrossRef]
Field, M. , Pan, Z. , Stirling, D. , and Naghdy, F. , 2011, “Human Motion Capture Sensors and Analysis in Robotics,” Ind. Robot, 38(2), pp. 163–171. [CrossRef]
Moeslund, T. B. , Hilton, A. , and Kruger, V. , 2006, “A Survey of Advances in Vision-Based Human Motion Capture and Analysis,” Comput. Vis. Image Understanding, 104(2–3), pp. 90–126. [CrossRef]
Ma, L. , Zhang, W. , Fu, H.-Z. , Guo, Y. , Chablat, D. , and Bennis, F. , 2010, “A Framework for Interactive Work Design Based on Motion Tracking, Simulation and Analysis,” Hum. Factors Ergon. Manuf., 20(4), pp. 339–352. [CrossRef]
Chang, S.-W. , and Wang, M.-J. J. , 2007, “Digital Human Modeling and Workplace Evaluation: Using an Automobile Assembly Task as an Example,” Hum. Factors Ergon. Manuf., 17(5), pp. 445–455. [CrossRef]
Qiu, S. , Fan, X. , Wu, D. , He, Q. , and Zhou, D. , 2013, “Virtual Human Modeling for Interactive Assembly and Disassembly Operation in Virtual Reality Environment,” Int. J. Adv. Manuf. Technol., 69(9–12), pp. 2355–2372. [CrossRef]
Zhu, W. , Vader, A. M. , Chadda, A. , Leu, M. C. , Liu, X. F. , and Vance, J. B. , 2013, “Wii Remote-Based Low-Cost Motion Capture for Automated Assembly Simulation,” Virtual Reality, 17(2), pp. 125–136. [CrossRef]
Stiefmeier, T. , Roggen, D. , Ogris, G. , Lukowicz, P. , and Tröster, G. , 2008, “Wearable Activity Tracking in Car Manufacturing,” IEEE Pervasive Comput., 7(2), pp. 42–50. [CrossRef]
Bosche, F. , and Lim, T. , 2015, “Towards a Cyber-Physical Gaming System for Training in the Construction and Engineering Industry,” ASME Paper No. DETC2014-34930.
Geiselhart, F. , Otto, M. , and Rukzio, E. , 2016, “On the Use of Multi-Depth-Camera Based Motion Tracking Systems in Production Planning Environments,” Procedia CIRP, 41, pp. 759–764.
Sung, R. C. W. , Ritchie, J. M. , Lim, T. , and Kosmadoudi, Z. , 2012, “Automated Generation of Engineering Rationale, Knowledge and Intent Representations During the Product Life Cycle,” Virtual Reality, 16(1), pp. 69–85. [CrossRef]
Schroeder, W. J. , Martin, K. , and Lorensen, B. , 2006, The Visualization Toolkit, Kitware, New York.
Flack, D. , 2001, “Measurement Good Practice Guide No. 41: CMM Measurement Strategies,” National Physical Laboratory, London.
Lim, T. , Ritchie, J. M. , Sung, R. , Kosmadoudi, Z. , Liu, Y. , and Thi, A. G. , 2010, “Haptic Virtual Reality Assembly—Moving Towards Real Engineering Applications,” Advances in Haptics, InTech, Rijeka, Croatia, pp. 693–723. [CrossRef]
Ritchie, J. M. , Lim, T. , Sung, R. , Sivanathan, A. , Fletcher, C. , Liu, Y. , Kosmadoudi, Z. , Gonzalez, G. , and Medellin, H. , 2014, “Knowledge Capture in Virtual Reality and Beyond,” Advances in Computers and Information in Engineering Research, J. G. Michopoulos , C. J. J. Paredis , D. W. Rosen , and J. M. Vance , eds., ASME Press, New York, pp. 531–555. [CrossRef]
Renishaw, 2017, “MODUS™,” Renishaw plc., Gloucestershire, UK, accessed Oct. 4, 2017, http://www.renishaw.com/en/modus--10495


Grahic Jump Location
Fig. 1

Schematic diagram of proposed methodology

Grahic Jump Location
Fig. 2

Inspection stylus and tablet analog

Grahic Jump Location
Fig. 3

Procedure to follow in a planning session

Grahic Jump Location
Fig. 4

Strategic activity of planning task

Grahic Jump Location
Fig. 5

Trajectory segments of probing points

Grahic Jump Location
Fig. 6

Strategic activity of different subtasks

Grahic Jump Location
Fig. 7

Different view angles of user strategic activity

Grahic Jump Location
Fig. 8

Collision-free generated inspection path based on captured user strategy

Grahic Jump Location
Fig. 9

Coordinate measuring machine part program automatically generated by the system

Grahic Jump Location
Fig. 10

Integrated definition diagram of part alignment activity

Grahic Jump Location
Fig. 11

Integrated definition diagram of tolerance inspection activity

Grahic Jump Location
Fig. 12

Text instructions representation of captured user strategy

Grahic Jump Location
Fig. 13

Screenshots of annotated video clips with subtitles

Grahic Jump Location
Fig. 14

Storyboard representation



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In