Research Papers

A Multiscale Materials Modeling Method With Seamless Zooming Capability Based on Surfacelets1

[+] Author and Article Information
Wei Huang

HP Labs,
Palo Alto, CA 94304
e-mail: huang@hp.com

Yan Wang

School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: yan.wang@me.gatech.edu

David W. Rosen

School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332
e-mail: david.rosen@me.gatech.edu

2Corresponding author.

Contributed by the Computers and Information Division of ASME for publication in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript received November 13, 2015; final manuscript received October 7, 2016; published online February 16, 2017. Editor: Bahram Ravani.

J. Comput. Inf. Sci. Eng 17(2), 021007 (Feb 16, 2017) (9 pages) Paper No: JCISE-15-1369; doi: 10.1115/1.4034999 History: Received November 13, 2015; Revised October 07, 2016

In multiscale materials modeling, it is desirable that different levels of details can be specified in different regions of interest without the separation of scales so that the geometric and physical properties of materials can be designed and characterized. Existing materials modeling approaches focus more on the representation of the distributions of material compositions captured from images. In this paper, a multiscale materials modeling method is proposed to support interactive specification and visualization of material microstructures at multiple levels of details, where designer's intent at multiple scales is captured. This method provides a feature-based modeling approach based on a recently developed surfacelet basis. It has the capability to support seamless zoom-in and zoom-out. The modeling, operation, and elucidation of materials are realized in both the surfacelet space and the image space.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Shan, Z. , and Gokhale, A. M. , 2004, “ Digital Image Analysis and Microstructure Modeling Tools for Microstructure Sensitive Design of Materials,” Int. J. Plast., 20(7), pp. 1347–1370. [CrossRef]
Lewis, A. C. , and Geltmacher, A. B. , 2006, “ Image-Based Modeling of the Response of Experimental 3D Microstructures to Mechanical Loading,” Scr. Mater., 55(1), pp. 81–85. [CrossRef]
Qian, L. , Toda, H. , Uesugi, K. , Kobayashi, M. , and Kobayashi, T. , 2008, “ Direct Observation and Image-Based Simulation of Three-Dimensional Tortuous Crack Evolution Inside Opaque Materials,” Phys. Rev. Lett., 100(11), p. 115505. [CrossRef] [PubMed]
Corson, P. B. , 1974, “ Correlation Functions for Predicting Properties of Heterogeneous Materials. I. Experimental Measurement of Spatial Correlation Functions in Multiphase Solids,” J. Appl. Phys., 45(7), pp. 3159–3164. [CrossRef]
Adams, B. L. , Morris, P. R. , Wang, T. T. , Willden, K. S. , and Wright, S. I. , 1987, “ Description of Orientation Coherence in Polycrystalline Materials,” Acta Metall., 35(12), pp. 2935–2946. [CrossRef]
Wang, Y. , and Rosen, D. W. , 2010, “ Multiscale Heterogeneous Modeling With Surfacelets,” Comput.-Aided Des. Appl., 7(5), pp. 759–776.
Huang, W. , Wang, Y. , and Rosen, D. W. , 2014, “ Inverse Surfacelet Transform for Image Reconstruction With Constrained Conjugate Gradient Methods,” ASME J. Comput. Inf. Sci. Eng., 14(2), p. 021005. [CrossRef]
Yang, N. , Boselli, J. , and Sinclair, I. , 2001, “ Simulation and Quantitative Assessment of Homogeneous and Inhomogeneous Particle Distributions in Particulate Metal Matrix Composites,” J. Microsc., 201(2), pp. 189–200. [CrossRef] [PubMed]
Ayyar, A. , and Chawla, N. , 2006, “ Microstructure-Based Modeling of Crack Growth in Particle Reinforced Composites,” Compos. Sci. Technol., 66(13), pp. 1980–1994. [CrossRef]
Valiveti, D. M. , and Ghosh, S. , 2007, “ Morphology Based Domain Partitioning of Multi-Phase Materials: A Preprocessor for Multi-Scale Modelling,” Int. J. Numer. Methods Eng., 69(8), pp. 1717–1754. [CrossRef]
Schröder-Turk, G. E. , Mickel, W. , Kapfer, S. C. , Klatt, M. A. , Schaller, F. M. , Hoffmann, M. J. F. , Kleppmann, N. , Armstrong, P. , Inayat, A. , Hug, D. , Reichelsdorfer, M. , Peukert, W. , Schwieger, W. , and Mecke, K. , 2011, “ Minkowski Tensor Shape Analysis of Cellular, Granular and Porous Structures,” Adv. Mater., 23(22–23), pp. 2535–2553. [CrossRef] [PubMed]
Adams, B. L. , Henrie, A. , Henrie, B. , Lyon, M. , Kalidindi, S. R. , and Garmestani, H. , 2001, “ Microstructure-Sensitive Design of a Compliant Beam,” J. Mech. Phys. Solids, 49(8), pp. 1639–1663. [CrossRef]
Saheli, G. , Garmestani, H. , and Adams, B. L. , 2004, “ Microstructure Design of a Two Phase Composite Using Two-Point Correlation Functions,” J. Comput.-Aided Mater. Des., 11(2–3), pp. 103–115. [CrossRef]
Adams, B. L. , Xiang, G. , and Kalidindi, S. R. , 2005, “ Finite Approximations to the Second-Order Properties Closure in Single Phase Polycrystals,” Acta Mater., 53(13), pp. 3563–3577. [CrossRef]
Torquato, S. , Beasley, J. D. , and Chiew, Y. C. , 1988, “ Two-Point Cluster Function for Continuum Percolation,” J. Chem. Phys., 88(10), pp. 6540–6547. [CrossRef]
Manwart, C. , Torquato, S. , and Hilfer, R. , 2000, “ Stochastic Reconstruction of Sandstones,” Phys. Rev. E, 62(1), pp. 893–899. [CrossRef]
Tewari, A. , Gokhale, A. M. , Spowart, J. E. , and Miracle, D. B. , 2004, “ Quantitative Characterization of Spatial Clustering in Three-Dimensional Microstructures Using Two-Point Correlation Functions,” Acta Mater., 52(2), pp. 307–319. [CrossRef]
Baniassadi, M. , Garmestani, H. , Li, D. S. , Ahzi, S. , Khaleel, M. , and Sun, X. , 2011, “ Three-Phase Solid Oxide Fuel Cell Anode Microstructure Realization Using Two-Point Correlation Functions,” Acta Mater., 59(1), pp. 30–43. [CrossRef]
Fullwood, D. T. , Niezgoda, S. R. , Adams, B. L. , and Kalidindi, S. R. , 2010, “ Microstructure Sensitive Design for Performance Optimization,” Prog. Mater. Sci., 55(6), pp. 477–562. [CrossRef]
Baniassadi, M. , Ahzi, S. , Garmestani, H. , Ruch, D. , and Remond, Y. , 2012, “ New Approximate Solution for N-Point Correlation Functions for Heterogeneous Materials,” J. Mech. Phys. Solids, 60(1), pp. 104–119. [CrossRef]
Fast, T. , and Kalidindi, S. R. , 2011, “ Formulation and Calibration of Higher-Order Elastic Localization Relationships Using the MKS Approach,” Acta Mater., 59(11), pp. 4595–4605. [CrossRef]
Xu, H. , Dikin, D. A. , Burkhart, C. , and Chen, W. , 2014, “ Descriptor-Based Methodology for Statistical Characterization and 3D Reconstruction of Microstructural Materials,” Comput. Mater. Sci., 85, pp. 206–216. [CrossRef]
Gupta, A. , Cecen, A. , Goyal, S. , Singh, A. K. , and Kalidindi, S. R. , 2015, “ Structure–Property Linkages Using a Data Science Approach: Application to a Non-Metallic Inclusion/Steel Composite System,” Acta Mater., 91, pp. 239–254. [CrossRef]
Wu, K. , Dijke, M. J. , Couples, G. D. , Jiang, Z. , Ma, J. , Sorbie, K. S. , Crawford, J. , Young, I. , and Zhang, X. , 2006, “ 3D Stochastic Modelling of Heterogeneous Porous Media—Applications to Reservoir Rocks,” Transp. Porous Media, 65(3), pp. 443–467. [CrossRef]
Wang, Y. , 2007, “ Periodic Surface Modeling for Computer Aided Nano Design,” Comput.-Aided Des., 39(3), pp. 179–189. [CrossRef]
Wang, Y. , 2008, “ Degree Elevation and Reduction of Periodic Surfaces,” Comput.-Aided Des. Appl., 5(6), pp. 841–854.
Wang, Y. , 2009, “ Computing Minkowski Sum of Periodic Surface Models,” Comput.-Aided Des. Appl., 6(6), pp. 825–837.
Qi, C. , and Wang, Y. , 2009, “ Feature-Based Crystal Construction in Computer-Aided Nano-Design,” Comput.-Aided Des., 41(11), pp. 792–800. [CrossRef]
Huang, W. , Didari, S. , Wang, Y. , and Harris, T. A. , 2015, “ Generalized Periodic Surface Model and Its Application in Designing Fibrous Porous Media,” Eng. Comput., 32(1), pp. 7–36. [CrossRef]
Jung, Y. , Chu, K. T. , and Torquato, S. , 2007, “ A Variational Level Set Approach for Surface Area Minimization of Triply-Periodic Surfaces,” J. Comput. Phys., 223(2), pp. 711–730. [CrossRef]
Yoo, D. J. , 2011, “ Porous Scaffold Design Using the Distance Field and Triply Periodic Minimal Surface Models,” Biomaterials, 32(31), pp. 7741–7754. [CrossRef] [PubMed]
Yoo, D. , 2013, “ New Paradigms in Hierarchical Porous Scaffold Design for Tissue Engineering,” Mater. Sci. Eng.: C, 33(3), pp. 1759–1772. [CrossRef]
Afshar, M. , Anaraki, A. P. , Montazerian, H. , and Kadkhodapour, J. , 2016, “ Additive Manufacturing and Mechanical Characterization of Graded Porosity Scaffolds Designed Based on Triply Periodic Minimal Surface Architectures,” J. Mech. Behav. Biomed. Mater., 62, pp. 481–494. [CrossRef] [PubMed]
Didari, S. , Harris, T. A. , Huang, W. , Tessier, S. M. , and Wang, Y. , 2012, “ Feasibility of Periodic Surface Models to Develop Gas Diffusion Layers: A Gas Permeability Study,” Int. J. Hydrogen Energy, 37(19), pp. 14427–14438. [CrossRef]
Yang, N. , Gao, L. , and Zhou, K. , 2015, “ Simple Method to Generate and Fabricate Stochastic Porous Scaffolds,” Mater. Sci. Eng.: C, 56, pp. 444–450. [CrossRef]
Xiao, F. , and Yin, X. , 2016, “ Geometry Models of Porous Media Based on Voronoi Tessellations and Their Porosity–Permeability Relations,” Comput. Math. Appl., 72(2), pp. 328–348. [CrossRef]
Avnir, D. , Farin, D. , and Pfeifer, P. , 1985, “ Surface Geometric Irregularity of Particulate Materials: The Fractal Approach,” J. Colloid Interface Sci., 103(1), pp. 112–123. [CrossRef]
Mandelbrot, B. B. , Passoja, D. E. , and Paullay, A. J. , 1984, “ Fractal Character of Fracture Surfaces of Metals,” Nature, 308(5961), pp. 721–722. [CrossRef]
Wang, Y. , 2010, “ 3D Fractals From Periodic Surfaces,” ASME Paper No. DETC2010-29081.
Huang, W. , Wang, Y. , and Rosen, D. W. , 2016, “ Material Feature Representation and Identification With Composite Surfacelets,” J. Comput. Des. Eng., 3(4), pp. 370–384.


Grahic Jump Location
Fig. 1

The general procedure of materials specification

Grahic Jump Location
Fig. 2

Geometric interpretation of surfacelets: (a) 3D ridgelet, (b) cylindrical surfacelet, and (c) ellipsoidal surfacelet

Grahic Jump Location
Fig. 3

An example 3D image of fiber-based composite

Grahic Jump Location
Fig. 4

Result of cubic spline interpolation for parameter α

Grahic Jump Location
Fig. 5

Result of piecewise cubic Hermite interpolating polynomial for parameter α

Grahic Jump Location
Fig. 6

Result of cubic spline interpolation for parameter μ

Grahic Jump Location
Fig. 7

Result of 2D cubic spline interpolation for parameters μ and α

Grahic Jump Location
Fig. 8

Determination of the levels of collocation points: (a) 1D collocation and (b) 2D collocation

Grahic Jump Location
Fig. 9

The 1D (a) and 2D (b) zoom-in examples

Grahic Jump Location
Fig. 10

The general procedure of the computer-aided material microstructure modeling and specification process

Grahic Jump Location
Fig. 11

The specification result of locations and orientations of the three fibers in the surfacelet domain at step 2

Grahic Jump Location
Fig. 12

The result of inverse surfacelet transform at step 3 (the size of the 3D image is 20 × 20 × 9)

Grahic Jump Location
Fig. 13

The first resulting image of inverse surfacelet transform at step 3 with enhanced resolution (the size is 50 × 50 × 9)

Grahic Jump Location
Fig. 14

Zoom-in for detailed design of fiber–matrix interphase. (a) The resulting image of step 3. (b) The resulting image after visual zoom-in operation. (c) The resulting image of step 4. (d) The reconstructed image of the resulting surfacelets in step 5.

Grahic Jump Location
Fig. 15

The result of step 5

Grahic Jump Location
Fig. 16

The result of step 7

Grahic Jump Location
Fig. 17

The image reconstruction result in step 8

Grahic Jump Location
Fig. 18

The resulting image of the zoom-out operation (the first slice only)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In