Application of a Unified Jacobian—Torsor Model for Tolerance Analysis

[+] Author and Article Information
Alain Desrochers

Université de Sherbrooke, Department of Mechanical Engineeringe-mail: Alain.Desrochers@gme.usherb.ca

Walid Ghie

Université de Sherbrooke, Department of Mechanical Engineeringe-mail: Walid_Ghie@uqtr.ca

Luc Laperrière

Université du Québec à Trois-Rivières, Department of Mechanical Engineeringe-mail: Luc_Laperriere@uqtr.ca

J. Comput. Inf. Sci. Eng 3(1), 2-14 (May 15, 2003) (13 pages) doi:10.1115/1.1573235 History: Received October 01, 2002; Revised March 01, 2003; Online May 15, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Requicha,  A. A. G., 1983, “Towards a Theory of Geometric Tolerancing,” Int. J. Robot. Res., 2(4), pp. 45–60.
Ballot, E., Bourdet, P., and Thiébaut, F., 2001, “Determination of Relative Situations of Parts for Tolerance Computation,” 7th CIRP International Seminar on Computer Aided Tolerancing, Cachan, France, April 24–25, pp. 65–74.
Rivest,  L., Fortin,  C., and Morel,  C., 1994, “Tolerancing a Solid Model With a Kinematic Formulation,” Comput.-Aided Des., 26(6), pp. 465–485.
Desrochers, A., Clement, A., and Rivière, A., 1991, “Theory and Practice of 3D Tolerancing for Assembly,” CIRP International Working Seminar on Tolerancing, Penn. State Univ., pp. 25–55.
Wirtz, A., 1989, “Vectorial Tolerancing,” International Conference on CAD/CAM and AMT, CIRP Session on Tolerancing for Function in a CAD/CAM Environment, Vol. 2, Israel, Dec. 11–14.
Ballot, E., 1995, “Lois de comportment géométrique des mécanismes pour le tolérancement,” Thèse Ph.D., École Normale Supérieure de Cachan.
Gaunet, D., 1993, “Vectorial Tolerancing Model,” 3rd CIRP International Seminar on Computer Aided Tolerancing, April 27–28, pp. 25–50.
Desrochers, A., 1991, “Modèle conceptuel du dimensionnement et du tolérancement des mécanismes: Représentation dans les systèmes CFAO,” Thèse Ph.D., École Centrale de Paris.
Adams, J. D., and Whitney, D. E., 1999, “Application of Screw Theory to Motion Analysis of Assemblies of Rigid Parts,” Proceedings of IEEE International Symposium on Assembly and Task Planning, Porto, Portugal, July, pp. 75–80.
Whitney,  D. E., Gilbert,  O. L., and Jastrzebski,  M., 1994, “Representation of Geometric Variations Using Matrix Transformation for Statistical Tolerance Analysis in Assembly,” Res. Eng. Des., 6, pp. 191–210.
Chase,  K. W., Gao,  J., and Magleby,  S. P., 1995, “Generalized 2-D Tolerance Analysis of Mechanical Assemblies With Small Kinematic Adjustments,” Journal of Design and Manufacturing, 5(4), pp. 263–274.
Chase,  K. W., Gao,  J., and Magleby,  S. P., 1998, “General 3-D Tolerance Analysis of Mechanical Assemblies With Small Kinematic Adjustments,” IIE Trans., 30, pp. 367–377.
Laperrière, L., and Lafond, P., 1998, “Identification of Dispersions Affecting Pre-Defined Functional Requirements of Mechanical Assemblies,” Proceedings of 2nd IDMME Conference, Compiège, France, May 27–29, pp. 721–728.
Laperrière, L., and Lafond, P., 1999, “Tolerances Analysis and Synthesis Using Virtuals Joints,” 6th CIRP International Seminar on Computer Aided Tolerancing, Enschede, Netherlands, March 22–24, pp. 405–414.
Desrochers, A., and Delbart, O., 1997, “Determination of Part Position Uncertainty Within Mechanical Assembly Using Screw Parameters,” 5th CIRP Intrnational Seminar on Computer Aided Tolerancing, Toronto, Canada, April 27–29, pp. 125–136.
Bourdet, P., and Ballot, E., 1995, “Equations formelles et tridimensionnelles des chai⁁nes de dimensions dans les mécanismes,” Séminaire Tolérancement et chai⁁nes de cotes, fév., pp. 135–146.
Desrochers, A., 1999, “Modeling Three-Dimensional Tolerance Zones Using Screw Parameters,” CD-ROM Proceedings of ASME 25th Design Automation Conference, DAC-8587, Las-Vegas.
Turner, J., and Srikanth, S., 1990, “Constraint Representation and Reduction in Assembly Modeling and Analysis,” Rensselear Design Research Center, Tech Report, No. 90027.
Zhang, G., and Porchet, M., 1993, “Some New Developments in Tolerance Design in CAD,” Proceedings of the 19th ASME Annual International Design Automation Conference And Exposition, Albuquerque, 2 , pp. 175–185.
Zhang,  G., 1996, “Simultaneous Tolerancing for Design and Manufacturing,” Int. J. Prod. Res., 34(12), pp. 3361–3382.
Hansen, E., 1992, “Global Optimization Using Interval Analysis,” Marcel Dekker, ISBN 0-8247-8696-3.
Kolev, L., 1993, “Interval Methods for Circuit Analysis,” World Scientific Publishing Company, Incorporated, ISBN 9810214138.
Jaulin, L., Kieffer, M., and Didrit, O., 2001, “Applied Interval Analysis With Examples in Parameter and State Estimation, Robust Control and Robotics,” World Scientific Publishing Company Incorporated, ISBN 1852332190.
Moore, R., 1979, “Methods and Applications of Interval Analysis,” Society for Industrial and Applied Mathematic, ISBN 0898711614.
Agati, P., Lerouge, F., and Rosetto, M., 2001, “Liaisons, mécanismes et assemblages,” Paris, Dunod, ISBN 2-10-004702-7.
Arakelian, V., 1997, “Structure et cinématique des mécanismes,” Paris, Hermès, ISBN 2-86601-642-47.
Ghie, W., and Laperriere, L., 2000, “Automatic Generation of Tolerance Chains Around Functional Requirements of Mechanical Assemblies,” CD-ROM Proceedings of 3rd IDMME conference, Montreal, Canada.
Khalil, W., and Dombre, É., 1986, “La robotique pour ingénieurs,” McGraw-Hill, ISBN 2-7042-1133-7.
Tsai L., 1999, “The Mechanics of Serial and Parallel Manipulators,” New York, N.Y.: J. Wiley and Sons, ISBN 0-471-32593-7.
Ghie, W., Laperrière, L., and Desrochers, A., 2002, “A Unified Jacobian-Torsor Model for Analysis in Computer Aided Tolerancing,” CD-ROM Proceedings of 4th IDMME conference, France, May 14–16.
Laperrière, L., Ghie, W., and Desrochers, A., 2002, “Statistical and Deterministic Tolerance Analysis and Synthesis Using a Unified Jacobian-Torsor Model,” Annals of 52nd CIRP General Assembly, San Sebastian, 51 (1) pp. 417–420.
Clément, A., Riviere, A., and Temmerman, M., 1994, “Cotation tridimensionnelle des systèmes mécaniques,” théorie & pratique, PYC, ISBN 2-85330-132-X.


Grahic Jump Location
Constraints of a zone of tolerance (shift of a plane) undergoing a rotation
Grahic Jump Location
Methodology for tolerance analysis using the unified model
Grahic Jump Location
Definition of the two parts assembly
Grahic Jump Location
Kinematic chains identification



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In