Frictionless rough contact problems have been studied in great detail by J. A. Greenwood and his co-workers. The only thing that actually seems missing is a simulated figure of the real contact between two rough bodies. Such a figure will be provided. Frictional rough elastic contact, on the other hand, seems to be terra incognita, and we intend to explore it. We will use two-dimensional rough bodies, because then we can simulate many asperities, and also because three-dimensional does not differ very much from two-dimensional in frictional contact, while finally the figures resulting from two-dimensional are clearer and more transparent as well as more realistic. On the other hand, two-dimensional calculations yield only qualitative results; for quantitative results one needs three-dimensional computations.

1.
Adler
R. J.
,
1981
, “
Random field models in surface science
,”
Bull. Int. Statist. Inst.
, Vol.
49
, pp.
669
681
.
2.
Bentall
R. H.
, and
Johnson
K. L.
,
1967
, “
Slip in the rolling contact of two dissimilar elastic rollers
,”
Int. Journal of Mechanical Sciences
, Vol.
9
, pp.
389
404
.
3.
Carter
F. C.
,
1926
, “
On the action of a locomotive driving wheel
,”
Proc. Roy. Soc. London
, Vol.
A112
, pp.
151
157
.
4.
Pater, A. D. de, 1962, “On the reciprocal pressure between two bodies,” Proceedings Symposium Rolling Contact Phenomena, J. B. Bidwell, ed., Elsevier, p. 33.
5.
Duvaut, G., and Lions, J.-L., 1972, Les ine´quations en me´chanique et en physique, Dunod, Paris.
6.
Carneiro Esteves, A., Seabra, J., and Berthe, D., 1988, “Roughness frequency analysis and particle depth,” (Interface Dynamics) Proceedings 14th Leeds-Lyon Symposium on Tribology, D. Dowson, C. M. Taylor, M. Godet, and D. Berthe, eds., Elsevier.
7.
Fichera
G.
,
1964
, “
Problemi elastostatici con vincoli unilaterale: Il probeleme di Signorini con ambigue condizioni al contorno
,”
Mem. Accad. Nazionale dei Lincei Ser.
, Vol.
8
, No.
7
, pp.
91
140
.
8.
Greenwood
J. A.
, and
Tripp
J. H.
,
1967
, “
The Elastic Contact of Rough Spheres
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
34
, p.
153
153
.
9.
Greenwood J. A., and Williamson, J. B. P., 1966, “Contact of nominally flat surfaces,” Proceedings Royal Society of London Vol. A295 p. 300.
10.
Hertz
H.
,
1882
,
U¨ber die Beru¨hrung fester elastischer Ko¨rper
,”
Journal reine und angewandte Mathematik (Crelle)
, Vol.
92
, pp.
156
171
.
11.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
12.
Kalker, J. J., 1990, Three-dimensional Elastic Bodies in Rolling Contact, Kluwer Academic Publishers, Dordrecht, The Netherlands.
13.
Panagiotopoulos
P. D.
,
1975
, “
A non-linear approach to the unilateral contact and friction boundary value problem in the theory of elasticity
.”
Ingenieur Archiv.
Vol.
44
, pp.
421
432
.
14.
Thompson, T. R., ed., 1982, Rough Surfaces, Longman, London.
15.
Kalker, J. J., 1967, “On rolling contact of two elastic bodies in the presence of dry friction,” Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.
16.
Cattaneo
C.
,
1938
, “
Sul contatto di due corpi elastici: distribuzione locale degli sforzi
,”
Academia Nazionale Lincei
, Rend. Ser. 6, Vol.
27
, pp.
342
348
.
17.
Thompson
D. J.
,
1993
, “
Wheel-rail noise generation
,”
Parts I-V, Journal of Sound and Vibration
, Vol.
161
, pp.
387
481
.
18.
Vollebregt
E. A. H.
,
1995
, “
A Gauss-Seidel type solver for special convex programs, with application to frictional contact mechanics
,”
Journal of Optimization, Theory and Applications
, Vol.
87
, pp.
47
67
.
This content is only available via PDF.
You do not currently have access to this content.