A new experimental identification technique of a two-dimensional vibrating elastic structure with geometrical nonlinearity is considered. First it is shown that the governing equations given in the form of nonlinear partial differential equations can always be transformed to those given in the form of nonlinear ordinary differential equations called the modal equations, and hence identification is reduced to determination of the modal equations. Then a technique for determining the parameters of the modal equations through use of experimental data is proposed. Numerical simulation is conducted for typical cases, and applicability of the technique is confirmed.
Issue Section:
Technical Papers
1.
Busby
H. R.
Nopporn
C.
Singh
R.
1986
, “Experimental Modal Analysis of Non-Linear Systems: A Feasibility Study
,” J. Sound Vib.
, Vol. 180
, pp. 415
–427
.2.
Ibanez
P.
1973
, “Identification of Dynamic Parameters of Linear and Nonlinear Structural Models from Experimental Data
,” J. Nucl. Eng. Des.
, Vol. 25
, pp. 30
–41
.3.
Kamiya
K.
Yasuda
K.
1993
, “Experimental Identification of a Nonlinear Beam (Technique That Does Not Require Prior Knowledge of the Modal Functions)
,” 1994, Trans. JSME
, Vol. 60
, No. 573
, pp. 1553
–1560
.4.
Kirshenboim
J.
Ewins
D. J.
1984
, “A Method for Recognizing Structural Nonlinearities in Steady-State Harmonic Testing
,” ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design
, Vol. 106
, pp. 49
–52
.5.
Masri
S. F.
Caughey
T. K.
1979
, “A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 46
, pp. 433
–447
.6.
Masri
S. F.
Miller
H.
Sassi
Caughey
T. K.
1984
, “A Method for Reducing the Order of Nonlinear Dynamic Systems
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 51
, pp. 391
–398
.7.
Masri
S. F.
Miller
R. K.
Saud
A. F.
Caughey
T. K.
1987
a, “Identification of Nonlinear Vibrating Structures: Part I—Formulation
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 54
, pp. 918
–922
.8.
Masri
S. F.
Miller
R. K.
Saud
A. F.
Caughey
T. K.
1987
b, “Identification of Nonlinear Vibrating Structures: Part II—Applications
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 54
, pp. 923
–929
.9.
Nowacki, W., 1963, Dynamics of Elastic structures, Chapman & Hall, pp. 206–212.
10.
Stanway
R.
Sproston
J. L.
Stevens
N. G.
1985
, “A Note on Parameter Estimation in Non-Linear Vibrating Systems
,” Proc. Inst. Mech. Eng.
, Vol. 199
, No. Cl
, pp. 79
–84
.11.
Udwadia
F. E.
Kuo
Chin-Po
1981
, “Non-Parametric Identification of a Class of Non-Linear Close-Coupled Dynamic Systems
,” Earthqu. Eng. Struct. Dyn.
, Vol. 9
, pp. 385
–409
.12.
Yang
Y.
Ibrahim
S. R.
1985
, “A Nonparametic Identification Technique for a Variety of Discrete Nonlinear Vibrating Systems
,” ASME Journal of Vibration, Acoustics, Stress, and Reliability in Design
, Vol. 107
, pp. 60
–66
.13.
Yasuda
K.
Kawamura
S.
Watanabe
K.
1988
a, “Identification of Nonlinear Multi-Degree-of-Freedom Systems (Presentation of an Identification Technique)
, JSME lnt. J., Set. III
, Vol. 31
, No. 1
, pp. 8
–14
.14.
Yasuda
K.
Kawamura
S.
Watanabe
K.
1988
b, “Identification of Nonlinear Multi-Degree-of-Freedom Systems (Identification Under Noisy Measurements)
,” JSME Int. J., Ser. III
, Vol. 31
, No. 3
, pp. 502
–509
.15.
Yasuda
K.
Kawamura
S.
1989
, “A Nonparametric Identification Technique for Nonlinear Vibratory Systems (Proposition of the Technique)
,” JSME Int. J., Ser. III
, Vol. 32
, No. 3
, pp. 365
–372
.16.
Yasuda, K., and Kamiya, K., 1991, “Identification of Nonlinear Systems,” Proc. Asia-Pacific Vibration Conference, pp. 2.28–2.33.
17.
Yasuda
K.
Kamiya
K.
1990
, “Identification of a Nonlinear Beam (Proposition of an Identification Technique)
,” JSME Int. J., Ser. III
, Vol. 33
, No. 4
, pp. 535
–540
.18.
Yasuda
K.
Hayashi
N.
1982
, “Subharmonic Oscillations of a Prestressed Circular Plate
,” Bull. JSME
, Vol. 25
, No. 202
, pp. 620
–630
.
This content is only available via PDF.
Copyright © 1997
by The American Society of Mechanical Engineers
You do not currently have access to this content.