A new iterative scheme is proposed for finite element analysis of wrinkling or tension structures. The scheme is based upon the observation that there exists an invariant relationship, due to the uniaxial tensile stress state of wrinkling, between some of the strain components referred to the local frame aligned with wrinkling in a region where wrinkling occurs. This enables us to update the stress state and the internal forces correctly taking into account the existence of wrinkling. The finite element implementation of the scheme is straightforward and simple, and only minor modifications of the existing total Lagrangian finite element codes for membranes are needed. The validity of the scheme is demonstrated via numerical examples for the torsion of a membrane and the quasi-static inflation of an automotive airbag, both made of isotropic or anisotropic elastic membranes. The examples suggest that the present iterative scheme has a good convergence characteristic even for a large loading step.

1.
Bathe, K.-J., 1982, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, NJ.
2.
Contri
P.
, and
Schrefler
B. A.
,
1988
, “
A Geometrically Nonlinear Finite Element Analysis of Wrinkled Membrane Surfaces by a No-compression Material Model
,”
Communications in Appl. Num. Meth.
, Vol.
4
, pp.
5
15
.
3.
Fujikake
M.
,
Kojima
O.
, and
Fukushima
S.
,
1989
, “
Analysis of Fabric Tension Structures
,”
Comput. Struct.
, Vol.
32
, No.
3-4
, pp.
537
547
.
4.
Gerald, C. F., and Wheatley, P. O., 1984, Applied Numerical Analysis, Addison-Wesley Reading, MA.
5.
Kondo, K., lai, T., Moriguri, S., and Murasaki, T., 1955, Memoirs of the Unifying Study of the Basic Problems in Engineering by Means of Geometry, Vol. 1, pp. 417–441.
6.
Miller
R. K.
,
Hedgepeth
J. M.
,
Weingarten
V. I.
,
Das
P.
, and
Kahyai
S.
,
1982
, “
An Algorithm for Finite Element Analysis of Partly Wrinkled Membranes
,”
AIAA
, Vol.
20
, pp.
1761
1763
.
7.
Reissner, E., 1938, “On Tension Field Theory,” Proc. 5th Int. Congr. Appl. Mech., pp. 88–92.
8.
Roddeman
D. G.
,
Oomens
C. W. J.
,
Janssen
J. D.
, and
Drukker
J.
,
1987
, “
The Wrinkling of Thin Membranes: Part I—Theory
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
54
, pp.
884
887
.
9.
Roddeman
D. G.
,
1991
, “
Finite-Element Analysis of Wrinkling Membrane
,”
Communications in Appl. Num. Meth.
, Vol.
7
, pp.
299
307
.
10.
Steigmann
D. J.
, and
Pipkin
A. C.
,
1989
, “
Wrinkling of Pressurized Membranes
,”
ASME JOURNAL OF APPLIED MECHANICS
, VO1.
56
, pp.
624
628
.
11.
Tabarrok
B.
, and
Qin
Z.
,
1992
, “
Nonlinear Analysis of Tension Structures
,”
Comput. Struct.
, Vol.
45
, pp.
973
984
.
12.
Wagner
H.
,
1929
, “
Flat Sheet Metal Girders With Very Thin Metal Web
,”
Z. Flugtechn. Motorluftschiffahrt
, Vol.
20
, pp.
200
314
.
13.
Wu, C. H., and Canfield, T. R., 1981, “Wrinkling in Finite Plane-Stress Theory,” Q. Appl. Math., pp. 179–199.
This content is only available via PDF.
You do not currently have access to this content.