As the market demand becomes more diversified and dynamic, the requirements for manufacturing systems feature a high degree of flexibility, low cost, low volume, and short delivery times. One emerging way for such flexible manufacturing is so-called “factory-in-a-box,” by which production modules are installed in a container and transported by a vehicle. The factory-in-a-box manufacturing poses a unique challenge to manufacturing supply chain network since the ease of supply chain reconfiguration when the vehicle moves to a different production site has become a major concern in addition to transportation cost and delivery time. The supply chain design is further complicated by the fact that it is coupled with subassembly planning in manufacturing, which determines appropriate subassembly modules assigned to suppliers. As such, it is critical to understand the interaction between supply chain network reconfigurability and subassembly planning. This paper develops a model using a set of decision variables to jointly characterize the topology of supply chain network and subassembly planning. A binary nonlinear programming model has been developed for the concurrent optimization of subassembly planning and supply chain network with the consideration of reconfiguration of the supply chain structure. One numerical case study was conducted to demonstrate the proposed model by providing a quantitative guideline of reconfiguring supply chain network when the final production site (on a vehicle) changes locations.
Skip Nav Destination
ASME 2018 13th International Manufacturing Science and Engineering Conference
June 18–22, 2018
College Station, Texas, USA
Conference Sponsors:
- Manufacturing Engineering Division
ISBN:
978-0-7918-5137-1
PROCEEDINGS PAPER
Co-Design of Supply Chain Network and Subassembly Planning Considering the Reconfiguration of Supply Chain Structure for Factory-in-a-Box Manufacturing
Zhengqian Jiang,
Zhengqian Jiang
Florida State University, Tallahassee, FL
Search for other works by this author on:
Hui Wang,
Hui Wang
Florida State University, Tallahassee, FL
Search for other works by this author on:
Weihong Guo
Weihong Guo
Rutgers University, Piscataway, NJ
Search for other works by this author on:
Zhengqian Jiang
Florida State University, Tallahassee, FL
Hui Wang
Florida State University, Tallahassee, FL
Qi Tian
Rutgers University, Piscataway, NJ
Weihong Guo
Rutgers University, Piscataway, NJ
Paper No:
MSEC2018-6691, V003T02A015; 10 pages
Published Online:
September 24, 2018
Citation
Jiang, Z, Wang, H, Tian, Q, & Guo, W. "Co-Design of Supply Chain Network and Subassembly Planning Considering the Reconfiguration of Supply Chain Structure for Factory-in-a-Box Manufacturing." Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference. Volume 3: Manufacturing Equipment and Systems. College Station, Texas, USA. June 18–22, 2018. V003T02A015. ASME. https://doi.org/10.1115/MSEC2018-6691
Download citation file:
43
Views
Related Proceedings Papers
Related Articles
Geometric Optimization of Spatial Compliant Mechanisms Using Three-Dimensional Wide Curves
J. Mech. Des (May,2009)
An Optimization Framework for Operational-Level Resource Composition in an Inclusive Manufacturing System
J. Comput. Inf. Sci. Eng (October,2022)
Related Chapters
Computer Aided Manufacturing (CAM)
Computer Aided Design and Manufacturing
A Mathematical Model and Heuristic Procedure for Cellular Layout
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)
Rationale for Human-Powered Vehicle Design and Use
Design of Human Powered Vehicles