This paper presents enhancements to a previously developed mixed-lubrication ring-pack model that has been used extensively in the automotive industry in predicting piston-ring/liner oil film thickness, friction and oil-transport processes along the liner. The previous model considers three lubrication regimes, shear thinning of the lubricant, and the unsteady wetting conditions of the rings at the leading and trailing edges. The model incorporates the effects of surface roughness by using Patir and Cheng’s average flow model and the Greenwood and Tripp statistical asperity contact model, assuming a Gaussian distribution of surface roughness. However, as a result of the methods used to machine a cylinder liner and the wear-in process observed in engines, the cylinder liner finish is highly non-Gaussian. The purpose of this current study is to understand the effects of additional surface parameters other than Gaussian root-mean-square surface roughness on piston ring-pack friction in the context of a natural gas reciprocating engine ring/liner interface. In general, the surface roughness of a cylinder liner is negatively skewed. Applying similar methodology published in the literature, a wide variety of non-Gaussian probability density functions were generated in terms of the skewness of the cylinder liner surface. These probability density functions were implemented into the Greenwood and Tripp asperity contact model, and subsequently into the traditional MIT ring-pack friction model. The effects of surface skewness on flow were approximated using Gaussian flow factors and a simple truncation method. The enhanced model was studied in conjunction with results from an existing ring-pack dynamic model that provided the dynamic twists of the rings relative to the liner and inter-ring pressures. In this manner, a detailed analysis of the effects of engineered cylinder liner finish on reducing friction losses was performed.
Skip Nav Destination
ASME 2004 Internal Combustion Engine Division Fall Technical Conference
October 24–27, 2004
Long Beach, California, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
0-7918-3746-7
PROCEEDINGS PAPER
The Effects of Cylinder Liner Finish on Piston Ring-Pack Friction
Jeffrey Jocsak,
Jeffrey Jocsak
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Victor W. Wong,
Victor W. Wong
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Tian Tian
Tian Tian
Massachusetts Institute of Technology, Cambridge, MA
Search for other works by this author on:
Jeffrey Jocsak
Massachusetts Institute of Technology, Cambridge, MA
Victor W. Wong
Massachusetts Institute of Technology, Cambridge, MA
Tian Tian
Massachusetts Institute of Technology, Cambridge, MA
Paper No:
ICEF2004-0952, pp. 841-849; 9 pages
Published Online:
December 11, 2008
Citation
Jocsak, J, Wong, VW, & Tian, T. "The Effects of Cylinder Liner Finish on Piston Ring-Pack Friction." Proceedings of the ASME 2004 Internal Combustion Engine Division Fall Technical Conference. ASME 2004 Internal Combustion Engine Division Fall Technical Conference. Long Beach, California, USA. October 24–27, 2004. pp. 841-849. ASME. https://doi.org/10.1115/ICEF2004-0952
Download citation file:
19
Views
0
Citations
Related Proceedings Papers
Related Articles
A Numerical Model to Study the Role of Surface Textures at Top Dead Center Reversal in the Piston Ring to Cylinder Liner Contact
J. Tribol (April,2016)
Piston Ring-Cylinder Bore Friction Modeling in Mixed Lubrication Regime: Part I—Analytical Results
J. Tribol (January,2001)
Numerical Simulation of Piston Ring in Mixed Lubrication—A Nonaxisymmetrical Analysis
J. Tribol (July,1994)
Related Chapters
Alternative Systems
Turbo/Supercharger Compressors and Turbines for Aircraft Propulsion in WWII: Theory, History and Practice—Guidance from the Past for Modern Engineers and Students
Later Single-Cylinder Engines
Air Engines: The History, Science, and Reality of the Perfect Engine
Effectiveness of Minimum Quantity Lubrication (MQL) for Different Work Materials When Turning by Uncoated Carbide (SNMM and SNMG) Inserts
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)