Experimental data have shown that combustor temperature non-uniformities can lead to pressure side burning on first-stage turbine rotor blades. Although most modern turbines operate in an environment with significant heat transfer, the majority of hot streak experiments and simulations during the last decade have assumed adiabatic flow. This assumption can cause errors in the prediction of turbine cooling requirements. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a 1-1/2 stage high-pressure turbine geometry operating in subsonic flow. Combustor hot streaks and heat transfer effects at the airfoil surfaces were included in the simulations. The predicted aerodynamic (pressure) data shows close agreement with the available experimental data. The predicted heat flux results agree with experimental observations.

This content is only available via PDF.