The design of discrete film cooling holes for gas turbine airfoil applications is governed by a number of parameters influencing both their aerodynamic and thermal behaviour. This numerical and experimental study focuses on the marked differences between film cooling holes with combined streamwise and lateral inclination and film cooling holes with streamwise inclination only. The variation in the blowing angle was chosen on a newly defined and physically motivated basis. High resolution low speed experiments on a large scale turbine airfoil gave insights particularly into the intensified mixing process with lateral ejection. The extensive computational study is performed with the aid of a 3D block-structured Navier-Stokes solver incorporating a low-Reynolds-number k-ε turbulence model. Special attention is paid to mesh generation as a precondition for accurate high-resolution results. The downstream temperature fields of the jets show reduced spanwise variations with increasing lateral blowing angle; these variations are quantified for a comprehensive variety of configurations in terms of adiabatic film cooling effectiveness.

This content is only available via PDF.