Shen, Z., Ameta, G., Shah, J. J., and Davidson, J. K., 2005, “A Comparative Study of Tolerance Analysis Methods,” ASME Trans. J. Comput. Inf. Sci. Eng., 5, pp. 247–256.

[CrossRef]Davidson, J. K., Mujezinovič, A., and Shah, J. J., 2002, “A New Mathematical Model for Geometric Tolerances as Applied to Round Faces,” ASME J. Mech. Des., 124, pp. 609–622.

[CrossRef]Mujezinovič, A., Davidson, J. K., and Shah, J. J., 2004, “A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces,” ASME J. Mech. Des., 126, pp. 504–518.

[CrossRef]Giordano, M., and Duret, D., 1993, “Clearance Space and Deviation Space,” Proceedings of the Third CIRP Seminar on Computer-Aided Tolerancing, Ecole Normale Superiere, Cachan, France, Eyrolles, Paris, pp. 179–196.

Giordano, M., Pairel, E., and Samper, S., 1999, “Mathematical Representation of Tolerance Zones,” *Global Consistency of Tolerances*, Proceedings of the Sixth CIRP International Seminar on Computer-Aided Tolerancing, University of Twente, The Netherlands, Mar. 22–24, F. vanHouten and H. Kals, eds., Kluwer, Dordrecht, pp. 177–186.

Singh, G., Ameta, G., Davidson, J. K., and Shah, J. J., 2013, “Tolerance Analysis and Allocation of a Self-Aligning Coupling Assembly Using Tolerance-Maps,” ASME J. Mech. Des., 135, 031005.

[CrossRef]Davidson, J. K., and Shah, J. J., 2012, “Modeling of Geometric Variations for Line-Profiles,” ASME J. Comput. Inf. Sci. Eng., 12 (4), 041004.

[CrossRef]Haugen, E. B., 1968, Probabilistic Approaches to Design, Wiley & Sons, New York.

Whitney, D. E., Gilbert, O. L., and Jastrzebski, M., 1994, “Representation of Geometric Variations Using Matrix Transforms for Statistical Tolerance Analysis in Assemblies,” Res. Eng. Des., 6, pp. 191–210.

[CrossRef]Lee, S., and Yi, C., 1998, “Statistical Representation and Computation of Tolerance and Clearance for Assemblability Evaluation,” Robotica 16, pp. 251–264.

[CrossRef]Lehtihet, E. A., and Gunasena, U. N., 1988, “Models for the Position and Size Tolerance of a Single Hole,” Manufacturing Metrology, ASME PED-29, Presented at the Winter Annual Meeting of the ASME, Chicago, IL, Nov. 27–Dec. 2, pp. 49–63.

Glancy, C. G., and Chace, K. W., 1999, “A Second-Order Method for Assembly Tolerance Analysis,” Proceedings of the ASME Design Engineering Technical Conference, Las Vegas, NV, Sep. 12–15.

Yan, H., Wu, X., and Yang, J., 2015, “Application of Monte Carlo Method in Tolerance Analysis,” Proc. CIRP, 27, pp. 281–285.

[CrossRef]Ramnath, S., Haghighi, P., Chitale, A., Davidson, J. K., and Shah, J. J., “Comparative Study of Tolerance Analysis Methods Applied to a Complex Assembly,” Proc. CIRP, 75, pp. 208–213.

Ameta, G., Davidson, J. K., and Shah, J. J., 2011, “Effects of Size, Orientation, and Form Tolerances on the Frequency Distributions of Clearance between Two Planar Faces,” ASME J. Comput. Inf. Sci. Eng., 11, 011002.

[CrossRef]Ameta, G., Davidson, J. K., and Shah, J. J., 2010, “Statistical Tolerance Allocation for Tab-Slot Assemblies Utilizing Tolerance-Maps,” ASME J. Comput. Inf. Sci. Eng., 10, 011005.

[CrossRef]Davidson, J. K., and Shah, J. J., 2002, “Geometric Tolerances: A New Application for Line Geometry and Screws,” IMechE J. Mech. Eng. Sci. Part C, 216(C1), pp. 95–104.

[CrossRef]Coxeter, H. S. M., 1969, Introduction to Geometry, 2nd ed., Wiley, Toronto.

Bhide, S., Davidson, J. K., and Shah, J. J., 2003, “Areal Coordinates: The Basis for a Mathematical Model for Geometric Tolerances,” Proceedings of the seventh CIRP Seminar on Computer-Aided Tolerancing, Ecole Normale Superiere, Cachan, France, Kluwer, Dordrecht, The Netherlands, pp. 35–44.

Kalish, N., Ramnath, S., Haghighi, P., Davidson, J. K., Shah, J. J., and Shah, J. V., 2018, “Mathematical Tools for Automating Digital Fixture Setups: Constructing T-Maps and Relating Metrological Data to Coordinates for T-Maps and Deviation Spaces,” ASME J. Comput. Inf. Sci. Eng., 18(4), 041009.

[CrossRef]Mansuy, M., Giordano, M., and Davidson, J. K., 2013, “Comparison of Two Similar Mathematical Models for Tolerance Analysis: T-Map and Deviation Domain,” ASME J. Mech. Des., 135, 101008.

[CrossRef]Ameta, G., Samper, S., and Giordano, M., 2011, “Comparison of Spatial Math Models for Tolerance Analysis: Tolerance-Maps, Deviation Domain, and TTRS,” ASME J. Comput. Inf. Sci. Eng., 11(2), 021004.

[CrossRef]Teissandier, D., Delos, V., and Couetard, Y., 1999, “Operations on Polytopes: Application to Tolerance Analysis,” Proceedings of the Third CIRP Seminar on Computer-Aided Tolerancing, University of Twente, Enschede, The Netherlands, Kluwer, Dordrecht, pp. 425–434.

Ameta, G., Davidson, J. K., and Shah, J. J., 2018, “Statistical Tolerance Analysis With T-Maps for Assemblies,” Proc. CIRP, 75, pp. 220–225.

[CrossRef]Ameta, G., Davidson, J. K., and Shah, J. J., 2007, “Using Tolerance-Maps to Generate Frequency Distributions of Clearance for Pin-Hole Assemblies,” ASME J. Comput. Inf. Sci. Eng., 7, pp. 347–359.

[CrossRef]American National Standard ASME Y14.5M, 2009, Dimensioning and Tolerancing, The American Society of Mechanical Engineers, New York.

Rao, S. S., Haghighi, P., Shah, J. J., and Davidson, J. K., 2014, “Library of T-Maps for Dimensional and Geometric Tolerances,” Proceedings of the 19th ASME Design for Manufacturing and the Life Cycle Conference, Buffalo, NY, Aug. 4–7, CD-ROM, Paper #DETC2014-35273.

Delos, V., and Teissandier, D., 2015, “Minkowski Sum of Polytopes Defined by Their Vertices,” J. Appl. Math Phys., 3(1), pp. 62–67.

[CrossRef]Homri, L., Teissandier, D., and Ballu, A., 2015, “Tolerance Analysis by Polytopes: Taking Into Account Degrees of Freedom With Cap Half-Spaces,” Comput. Aid. Des., 62, pp. 112–130.

[CrossRef]Arroyo-Tobón, S., Teissandier, D., and Delos, V., 2017, “Tolerance Analysis With Polytopes in ℋ-V Description,” ASME J. Comput. Inf. Sci. Eng., 17(4), 041011.

[CrossRef]Valentine, F. A., 1964, Convex Sets, McGraw-Hill, New York.

Ziegler, G. M., 2007, Lectures on Polytopes, Springer, New York.

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H., 1996, “The Quickhull Algorithm for Convex Hulls,” ACM Trans. Math. Softw., 22(4), pp. 469–483.

[CrossRef]Preparata, F. P., and Shamos, M. I., 1985, Computational Geometry: An Introduction, Springer-Verlag, New York.

Davidson, J. K., and Hunt, K. H., 2004, Robots and Screw Theory, Oxford University Press, Oxford, UK.

Yuan, M. S. C., and Freudenstein, F., 1971, “Kinematic Analysis of Spatial Mechanisms by Means of Screw Coordinates Part 1—Screw Coordinates,” ASME J. Eng. Ind., 93B, pp. 61–66.

[CrossRef]Bourdet, P., and Clément, A., 1976, “Controlling a Complex Surface With a 3 Axis Measuring Machine,” Ann. CIRP Manuf. Technol., 25(1), pp. 359–361.

Giordano, M., Samper, S., and Petit, J., 2007, “Tolerance Analysis and Synthesis by Means of Deviation Domains, Axi-Symmetric Cases,” Models for Computer Aided Tolerancing in Design and Manufacturing, Springer, Dordrecht, The Netherlands, pp. 85–94.

Kalish N. J., 2016, “The Theory Behind Setup-Maps: A Computational Tool to Position Parts for Machining,” MS thesis, Arizona State University, Tempe, AZ.

Chitale, A., Kalish, N. J., Davidson, J. K., and Shah, J. J., 2018, “Generating T-Maps With the Kinematic Transformation to Model Manufacturing Variations of Parts With Position Tolerancing of Cylinders,” Proc. CIRP, 75, pp. 214–219.

[CrossRef]Hadwiger, H., 1957, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, New York.

SIEMENS, VisVSA Solutions Training Manual, Version 1.3, 2017.