Research Papers

Modeling Framework for a Consistent Integration of Geometry Knowledge During Conceptual Design

[+] Author and Article Information
Romain Barbedienne

IRT SystemX,
8 Avenue de la Vauve,
Palaiseau 91120, France
e-mail: romain.barbedienne@irt-systemx.fr

Olivia Penas

Laboratoire QUARTZ (EA7393) Supmeca,
3 rue Fernand Hainaut,
Saint-Ouen 93400, France
e-mail: olivia.penas@supmeca.fr

Jean-Yves Choley

Laboratoire QUARTZ (EA7393) Supmeca,
3 rue Fernand Hainaut,
Saint-ouen 93400, France
e-mail: jean-yves.choley@supmeca.fr

Peter Hehenberger

University of Applied Sciences Upper Austria,
FH Oberösterreich Stelzhamerstraße 23,
Wels 4600, Austria
e-mail: peter.hehenberger@fh-wels.at

1Corresponding author.

Contributed by the Computers and Information Division of ASME for publication in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript received January 31, 2018; final manuscript received December 18, 2018; published online March 6, 2019. Assoc. Editor: Caterina Rizzi.

J. Comput. Inf. Sci. Eng 19(2), 021009 (Mar 06, 2019) (16 pages) Paper No: JCISE-18-1032; doi: 10.1115/1.4042551 History: Received January 31, 2018; Revised December 18, 2018

This paper proposes a modeling framework for a consistent geometrical data link between a system model and a spatial architecture modeling in a 3D computer-aided design (CAD) environment, with a model-based system engineering (MBSE) approach. Our approach, focused on the conceptual design stage, for the evaluation of 3D architecture under physical constraints, aims at improving the system design by ensuring data consistency during collaborative design. This model transformation platform will ensure a seamless geometrical consistency and traceability from the requirements to the further design stages. The theoretical formalization of our approach presents a consistent integration of geometry knowledge all along the conceptual design. Then, the corresponding modeling platform implementation between the developed system modeling language (SysML) geometrical extension and a 3D CAD tool is described before detailing an application on a conveyor case study.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Kossiakoff, A. , Sweet, W. N. , Seymour, S. J. , and Biemer, S. M. , 2011, Systems Engineering Principles and Practice, Wiley, Hoboken, NJ.
Chapman, C. , and Pinfold, M. , 1999, “ Design Engineering—A Need to Rethink the Solution Using Knowledge Based Engineering,” Knowl.-Based Syst., 12(5–6), pp. 257–267. [CrossRef]
Hehenberger, P. , 2012, Advances in Model-Based Mechatronic Design, Trauner Verlag, Linz, Austria.
Gupta, S. , and Okudan, G. E. , 2008, “ Computer-Aided Generation of Modularised Conceptual Designs With Assembly and Variety Considerations,” J. Eng. Des., 19(6), pp. 533–551. [CrossRef]
Moullec, M.-L. , Jankovic, M. , Bouissou, M. , Bocquet, J.-C. , and Maas, O. , 2013, “ Proposition of Combined Approach for Architecture Generation Integrating Component Placement Optimization,” ASME Paper No. DETC2013-12557.
Chen, K. , Bankston, J. , Panchal, J. H. , and Schaefer, D. , 2009, “ A Framework for Integrated Design of Mechatronic Systems,” Collaborative Design and Planning for Digital Manufacturing, L. Wang , and A. Y. C. Nee , eds., Springer, London, pp. 37–70.
Reynaerts, D. , Peirs, J. , and Brussel, H. V. , 1998, “ A Mechatronic Approach to Microsystem Design,” IEEEASME Trans. Mechatron., 3(1), pp. 24–33. [CrossRef]
Grossard, M. , Boukallel, M. , Régnier, S. , and Chaillet, N. , 2013, “ Design of Integrated Flexible Structures for Micromanipulation,” Flexible Robotics, Wiley, Hoboken, NJ, pp. 1–35.
Hammadi, M. , Choley, J. Y. , and Penas, O. , 2011, “ Layout Optimization of Power Modules Using a Sequentially Coupled Approach,” Int. J. Simul. Model., 10(3), pp. 122–132. [CrossRef]
Ooshima, M. , and Masukata, S. , 2013, “ Design Methodology for Miniaturization of Motor Equipped in a Fluid Intermittent Control System,” International Conference on Electrical Machines and Systems (ICEMS), Busan, South Korea, Oct. 26–29, pp. 1194–1197.
Barbedienne, R. , Messaoud, Y. B. , Choley, J.-Y. , Penas, O. , Ouslimani, A. , and Rivière, A. , 2015, “ SAMOS for Spatial Architecture Based on Multi-Physics and Organisation of Systems in Conceptual Design,” IEEE International Symposium on Systems Engineering (ISSE), Rome, Italy, Sept. 28–30, pp. 135–141.
Barbedienne, R. , Penas, O. , Choley, J.-Y. , Riviere, A. , Warniez, A. , and Della Monica, F. , 2014, “ Introduction of Geometrical Contraints Modeling in SysML for Mechatronic Design,” Tenth France-Japan/Eighth Europe-Asia Congress on Mechatronics (MECATRONICS2014- Tokyo), Tokyo, Japan, Nov. 27–29, pp. 145–150.
Barbedienne, R. , Penas, O. , Choley, J.-Y. , and Gasser, L. , 2015, “ TheReSE: SysML Extension for Thermal Modeling,” Nineth Annual IEEE International Systems Conference (SysCon), Vancouver, BC, Canada, Apr. 13–16, pp. 301–308.
Habib, T. , and Komoto, H. , 2014, “ Comparative Analysis of Design Concepts of Mechatronics Systems With a CAD Tool for System Architecting,” Mechatronics, 24(7), pp. 788–804. [CrossRef]
Römer, A. , Pache, M. , Weißhahn, G. , Lindemann, U. , and Hacker, W. , 2001, “ Effort-Saving Product Representations in Design—Results of a Questionnaire Survey,” Des. Stud., 22(6), pp. 473–491. [CrossRef]
Do, E. Y.-L. , Gross, M. D. , Neiman, B. , and Zimring, C. , 2000, “ Intentions in and Relations Among Design Drawings,” Des. Stud., 21(5), pp. 483–503. [CrossRef]
Pache, M. , and Lindemann, U. , 2003, “ Sketching in 3D What Should Future Tools for Conceptual Design Look Like?,” Human Behaviour in Design, Springer, New York, pp. 243–252.
Tor, S. B. , Britton, G. A. , Zhang, W. Y. , and Deng, Y.-M. , 2002, “ Guiding Functional Design of Mechanical Products Through Rule-Based Causal Behavioural Reasoning,” Int. J. Prod. Res., 40(3), pp. 667–682. [CrossRef]
Cheutet, V. , 2006, Towards Semantic Modelling of Free-Form Mechanicals Products, Grenoble INPG, Grenoble, France.
Haskins, C. , 2011, “ 4.6. 1 A Historical Perspective of MBSE With a View to the Future,” Incose International Symposium, Denver, CO, June 23, pp. 493–509.
Estefan, J. A. , 2007, “ Survey of Model-Based Systems Engineering (MBSE) Methodologies,” Incose MBSE Focus Group, 25(8), pp. 1–12.
Andrianarison, E. , and Piques, J.-D. , 2010, “ SysML for Embedded Automotive Systems: A Practical Approach,” Conference on Embedded Real Time Software and Systems, Macau SAR, China.
Holt, J. , and Perry, S. , 2008, SysML for Systems Engineering, Institution of Engineering and technology, London, UK.
Baysal, M. M. , Roy, U. , Sudarsan, R. , Sriram, R. D. , and Lyons, K. W. , 2005, “ Product Information Exchange Using Open Assembly Model: Issues Related to Representation of Geometric Information,” ASME Paper No. IMECE2005-82812.
Albers, A. , and Christian, Z. , 2011, “ Interdisciplinary Systems Modeling Using the Contact & Channel-Model for SysML,” DS 68-9: 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering Design, Copenhagen, Denmark, Aug. 15–19. https://www.researchgate.net/publication/285582096_INTERDISCIPLINARY_SYSTEMS_MODELING_USING_THE_CONTACT_CHANNEL-MODEL_FOR_SYSML
Albers, A. , Braun, A. , Sadowski, E. , Wyatt, D. F. , Wynn, D. C. , and Clarkson, P. J. , 2010, “ Contact and Channel Modelling Using Part and Function Libraries in a Function-Based Design Approach,” ASME Paper No. DETC2010-28481.
Albert, A. , and Christian, Z. , 2013, “ Extending SysML for Engineering Designers by Integration of the Contact & Channel–Approach (C&C2-A) for Function-Based Modeling of Technical Systems,” Procedia Comput. Sci., 16, pp. 353–362. [CrossRef]
Bohnke, D. , Reichwein, A. , and Rudolph, S. , 2009, “ Design Language for Airplane Geometries Using the Unified Modeling Language,” ASME Paper No. DETC2009-87368.
Shah, J. J. , and Rogers, M. T. , 1988, “ Functional Requirements and Conceptual Design of the Feature-Based Modelling System,” Comput.-Aided Eng. J., 5(1), pp. 9–15. [CrossRef]
Shen, W. , Hao, Q. , and Li, W. , 2008, “ Computer Supported Collaborative Design: Retrospective and Perspective,” Comput. Ind., 59(9), pp. 855–862. [CrossRef]
Briggs, J. C. , Hepworth, A. I. , Stone, B. R. , Coburn, J. Q. , Greg Jensen, C. , and Red, E. , 2015, “ Integrated, Synchronous Multi-User Design and Analysis,” ASME J. Comput. Inf. Sci. Eng., 15(3), p. 031002. [CrossRef]
Hepworth, A. , Tew, K. , Trent, M. , Ricks, D. , Jensen, C. G. , and Red, W. E. , 2014, “ Model Consistency and Conflict Resolution With Data Preservation in Multi-User Computer Aided Design,” ASME J. Comput. Inf. Sci. Eng., 14(2), p. 021008. [CrossRef]
Maarten Bonnema, G. , and Van Houten, F. J. , 2006, “ Use of Models in Conceptual Design,” J. Eng. Des., 17(6), pp. 549–562. [CrossRef]
Boujut, J.-F. , and Laureillard, P. , 2002, “ A Co-Operation Framework for Product–Process Integration in Engineering Design,” Des. Stud., 23(6), pp. 497–513. [CrossRef]
Li, W. D. , Fuh, J. Y. H. , and Wong, Y. S. , 2004, “ An Internet-Enabled Integrated System for Co-Design and Concurrent Engineering,” Comput. Ind., 55(1), pp. 87–103. [CrossRef]
Qin, S. F. , Harrison, R. , West, A. A. , Jordanov, I. N. , and Wright, D. K. , 2003, “ A Framework of Web-Based Conceptual Design,” Comput. Ind., 50(2), pp. 153–164. [CrossRef]
Umeda, Y. , Takeda, H. , Tomiyama, T. , and Yoshikawa, H. , 1990, “ Function, Behaviour, and Structure,” Appl. Artif. Intell. Eng., 1, pp. 177–194. http://www-kasm.nii.ac.jp/papers/takeda/p90/umeda90fbs.pdf
Al-Fedaghi, S. , 2016, “ Function-Behavior-Structure Model of Design: An Alternative Approach,” Int. J. Adv. Comput. Sci. Appl., 7(7), pp. 133–139.
Komoto, H. , and Tomiyama, T. , 2012, “ A Framework for Computer-Aided Conceptual Design and Its Application to System Architecting of Mechatronics Products,” Comput.-Aided Des., 44(10), pp. 931–946. [CrossRef]
Chase, S. C. , and Liew, P. , 2001, “ A Framework for Redesign Using FBS Models and Grammar Adaptation,” Computer Aided Architectural Design Futures 2001, B. de Vries , J. van Leeuwen , and H. Achten , eds., Springer, Dordrecht, The Netherlands, pp. 467–477.
Simpson, T. W. , Bauer, M. D. , Allen, J. K. , and Mistree, F. , 1995, “ Implementation of Dfa in Conceptual and Embodiment Design Using Decision Support Problems,” ASME Design Engineering Technical Conference, Boston, MA, Sept. 17–20, pp. 119–126.
Demoly, F. , Gomes, S. , Eynard, B. , Rivest, L. , and Sagot, J.-C. , 2009, “ Assembly-Oriented Product Structure Based on Preliminary Assembly Process Engineering,” DS 58-7: International Conference on Engineering Design (ICED 09), Design for X/Design to X, Palo Alto, CA, Aug. 24–27, pp. 161–172.
Demoly, F. , Monticolo, D. , Eynard, B. , Rivest, L. , and Gomes, S. , 2010, “ Multiple Viewpoint Modelling Framework Enabling Integrated Product–Process Design,” Int. J. Interact. Des. Manuf. (IJIDeM), 4(4), pp. 269–280. [CrossRef]
Hsu, W. , Jerry Fuh, Y. , and Zhang, Y. , 1998, “ Synthesis of Design Concepts From a Design for Assembly Perspective,” Comput. Integr. Manuf. Syst., 11(1–2), pp. 1–13. [CrossRef]
Hahn, A. , 2010, “ Vehicle Sketch Pad: A Parametric Geometry Modeler for Conceptual Aircraft Design,” AIAA Paper No. 2010-657.
Seth, A. , Vance, J. M. , and Oliver, J. H. , 2011, “ Virtual Reality for Assembly Methods Prototyping: A Review,” Virtual Real., 15(1), pp. 5–20. [CrossRef]
Jayaram, S. , Connacher, H. I. , and Lyons, K. W. , 1997, “ Virtual Assembly Using Virtual Reality Techniques,” Comput.-Aided Des., 29(8), pp. 575–584. [CrossRef]
Ye, J. , Campbell, R. I. , Page, T. , and Badni, K. S. , 2006, “ An Investigation Into the Implementation of Virtual Reality Technologies in Support of Conceptual Design,” Des. Stud., 27(1), pp. 77–97. [CrossRef]
Zwolinski, P. , Tichkiewitch, S. , and Sghaier, A. , 2007, “ The Use of Virtual Reality Techniques During the Design Process: From the Functional Definition of the Product to the Design of Its Structure,” CIRP Ann., 56(1), pp. 135–138. [CrossRef]
Ng, L. X. , Ong, S. K. , and Nee, A. Y. C. , 2015, “ Conceptual Design Using Functional 3D Models in Augmented Reality,” Int. J. Interact. Des. Manuf. (IJIDeM), 9(2), pp. 115–133. [CrossRef]
Grady, J. O. , 2010, System Requirements Analysis, Elsevier, London, UK.
INCOSE, T. , 2007, “ Systems Engineering Vision 2020,” INCOSE, San Diego, CA, accessed Jan. 26, 2019, http://www.ccose.org/media/upload/SEVision2020_20071003_v2_03.pdf
Fowler, J. , 1995, STEP for Data Management, Exchange and Sharing, TA, Technology Appraisals Ltd, Twickenham, UK.
Kleiner, S. , and Kramer, C. , 2013, “ Model Based Design With Systems Engineering Based on RFLP Using V6,” Smart Product Engineering, M. Abramovici , and R. Stark , eds., Springer Berlin, pp. 93–102.
Bajaj, M. , Zwemer, D. , Yntema, R. , Phung, A. , Kumar, A. , Dwivedi, A. , and Waikar, M. , 2016, “ MBSE++ — Foundations for Extended Model-Based Systems Engineering Across System Lifecycle,” INCOSE Int. Symp., 26(1), pp. 2429–2445. [CrossRef]
Bajaj, M. , Cole, B. , and Zwemer, D. , 2016, “ Architecture to Geometry—Integrating System Models With Mechanical Design,” AIAA Paper No. AIAA 2016-5470.
Paviot, T. , Lamouri, S. , and Cheutet, V. , 2011, “ A Generic MultiCAD/MultiPDM Interoperability Framework,” Int. J. Serv. Oper. Inform., 6(1/2), pp. 124–137.
Pratt, M. J. , and Anderson, B. D. , 2001, “ A Shape Modelling Applications Programming Interface for the STEP Standard,” Comput.-Aided Des., 33(7), pp. 531–543. [CrossRef]
AFNet, 2015, “ STEP AP 242 Benchmark,” AFNet, Paris, France, accessed Oct. 9, 2018, http://afnet.fr/dotank/sps/ap242benchmark/
Peak, R. S. , Lubell, J. , Srinivasan, V. , and Waterbury, S. C. , 2005, “ STEP, XML, and UML: Complementary Technologies,” ASME J. Comput. Inf. Sci. Eng., 4(4), pp. 379–390. [CrossRef]
Hertkorn, P. , and Reichwein, A. , 2007, “ On a Model Driven Approach to Engineering Design,” International Conference on Engineering Design, Paris, France, Aug. 28--31, p. 8.
Shah, A. A. , Paredis, C. J. J. , Burkhart, R. , and Schaefer, D. , 2010, “ Combining Mathematical Programming and SysML for Automated Component Sizing of Hydraulic Systems,” ASME Paper No. DETC2010-28960.
Reichwein, A. , Paredis, C. J. J. , Canedo, A. , Witschel, P. , Stelzig, P. E. , Votintseva, A. , and Wasgint, R. , 2012, “ Maintaining Consistency Between System Architecture and Dynamic System Models With SysML4Modelica,” Sixth International Workshop on Multi-Paradigm Modeling, New York, Oct. 1, pp. 43–48. https://dl.acm.org/citation.cfm?id=2508451
Kharrat, M. , Penas, O. , Plateaux, R. , Trabelsi, H. , Choley, J. , Louati, J. , and Haddar, M. , 2017, “ Towards a 3D Conceptual Architecture Framework, Based on Multi-Physical Constraints,” IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, Oct. 11–13, pp. 1–8.
Barbedienne, R. , 2017, “ Gestion Des Interactions Pour L'évaluation en Phase de Préconception, des Architectures 3D de Systèmes Sous Contraintes Multi-physiques, application à la Thermique,” Ph.D. thesis, Université Paris-Saclay, Saint-Aubin, France. https://tel.archives-ouvertes.fr/tel-01565658/document
Kada, M. , 2006, “ 3D Building Generalization Based on Half-Space Modeling,” Multiple Representation Interoperability Spatial Data, Hanover, Germany, Feb. 22–24, pp. 58–64. http://www.isprs.org/proceedings/XXXVI/2-W40/58_XXXVI-2-W40.pdf
Clément, A. , Rivière, A. , Serré, P. , and Valade, C. , 1998, “ The TTRSs: 13 Constraints for Dimensioning and Tolerancing,” Geometric Design Tolerancing: Theories, Standards and Applications, H. A. ElMaraghy , ed., Springer, Boston, MA, pp. 122–131.
Friedenthal, S. , Moore, A. , and Steiner, R. , 2014, A Practical Guide to SysML: The Systems Modeling Language, Morgan Kaufmann, Burlington, MA.
Qin, Y. , Lu, W. , Qi, Q. , Liu, X. , Zhong, Y. , Scott, P. J. , and Jiang, X. , 2016, “ Status, Comparison, and Issues of Computer-Aided Design Model Data Exchange Methods Based on Standardized Neutral Files and Web Ontology Language File,” ASME J. Comput. Inf. Sci. Eng., 17(1), p. 010801. [CrossRef]
Gerber, A. , Lawley, M. , Raymond, K. , Steel, J. , and Wood, A. , 2002, “ Transformation: The Missing Link of MDA,” Graph Transformation, A. Corradini , H. Ehrig , H.-J. Kreowski , and G. Rozenberg , eds., Springer, Berlin, pp. 90–105.
Kramer, G. A. , 1991, “ Using Degrees of Freedom Analysis to Solve Geometric Constraint Systems,” First ACM Symposium on Solid Modeling Foundations and CAD/CAM Applications, Austin, TX, June 5–7, pp. 371–378.
Sadlauer, A. , and Hehenberger, P. , 2017, “ Using Design Languages in Model-Based Mechatronic System Design Processes,” Int. J. Agile Syst. Manage., 10(1), pp. 73–91. [CrossRef]
Baudier, Y. , Seytor, P. , Duceau, E. , Callot, M. , Ben Hamida, S. , and Huet, A. , 2014, L4.1 Cas D'usage Aérospatial Airbus Defense and Space, IRT-SystemX, Palaiseau, France.


Grahic Jump Location
Fig. 1

TTRS modeling data model implemented in GERTRUDe

Grahic Jump Location
Fig. 4

Model transformation detailed process using activity diagram

Grahic Jump Location
Fig. 3

Model transformation formalization using the direct translation

Grahic Jump Location
Fig. 2

Model transformation approach

Grahic Jump Location
Fig. 9

Extract from conveyor system requirements

Grahic Jump Location
Fig. 10

Initial physical architecture of the conveyor

Grahic Jump Location
Fig. 11

Geometrical enrichment of physical architecture by GERTRUDe

Grahic Jump Location
Fig. 12

Construction of the double cylinder support geometry

Grahic Jump Location
Fig. 6

Transformation of a 3D component into GERTRUDe

Grahic Jump Location
Fig. 7

Three-dimensional CAD into TTRS representation transformation

Grahic Jump Location
Fig. 5

Example of a finite cylinder construction during the model transformation

Grahic Jump Location
Fig. 8

Conveyor case study description

Grahic Jump Location
Fig. 13

Specification of relative positioning constraints to build the support double cylinder TTRS

Grahic Jump Location
Fig. 14

Distance constraint linked to the geometrical quantified requirements



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In