0
Research Papers

Conceptual Design of Structures Using an Upper Bound of von Mises Stress

[+] Author and Article Information
Ashok V. Kumar

Department of Mechanical and
Aerospace Engineering,
University of Florida,
Gainesville, FL 32611
e-mail: akumar@ufl.edu

Contributed by the Computers and Information Division of ASME for publication in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript received March 26, 2018; final manuscript received September 30, 2018; published online November 19, 2018. Assoc. Editor: Krishnan Suresh.

J. Comput. Inf. Sci. Eng 19(1), 011005 (Nov 19, 2018) (13 pages) Paper No: JCISE-18-1076; doi: 10.1115/1.4041705 History: Received March 26, 2018; Revised September 30, 2018

Optimal layouts for structural design have been generated using topology optimization approach with a wide variety of objectives and constraints. Minimization of compliance is the most common objective but the resultant structures often have stress concentrations. Two new objective functions, constructed using an upper bound of von Mises stress, are presented here for computing design concepts that avoid stress concentration. The first objective function can be used to minimize mass while ensuring that the design is conservative and avoids stress concentrations. The second objective can be used to tradeoff between maximizing stiffness versus minimizing the maximum stress to avoid stress concentration. The use of the upper bound of von Mises stress is shown to avoid singularity problems associated with stress-based topology optimization. A penalty approach is used for eliminating stress concentration and stress limit violations which ensures conservative designs while avoiding the need for special algorithms for handling stress localization. In this work, shape and topology are represented using a density function with the density interpolated piecewise over the elements to obtain a continuous density field. A few widely used examples are utilized to study these objective functions.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bendsøe, M. P. , and Kikuchi, N. , 1988, “ Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Comput. Methods Appl. Mech. Eng., 71(2), pp. 197–224. [CrossRef]
Bendsøe, M. P. , 1989, “ Optimal Shape Design as a Material Distribution Problem,” Struct. Multidiscip. Optim., 1(4), pp. 193–202. [CrossRef]
Rozvany, G. I. N. , Zhou, M. , and Birker, T. , 1992, “ Generalized Shape Optimization Without Homogenization,” Struct. Multidiscip. Optim., 4(3–4), pp. 250–254. [CrossRef]
Kumar, A. V. , and Gossard, D. C. , 1996, “ Synthesis of Optimal Shape and Topology of Structures,” ASME J. Mech. Des., 118(1), pp. 68–74. [CrossRef]
Wang, M. Y. , Wang, X. , and Guo, D. , 2003, “ A Level Set Method for Structural Topology Optimization,” Comput. Methods Appl. Mech. Eng., 192(1–2), pp. 227–246. [CrossRef]
Allaire, G. , Jouve, F. , and Toader, A. , 2004, “ Structural Optimization Using Sensitivity Analysis and a Level-Set Method,” J. Comput. Phys., 194(1), pp. 363–393. [CrossRef]
Burger, M. , Hackl, B. , and Ring, W. , 2004, “ Incorporating Topological Derivatives Into Level Set Methods,” J. Comput. Phys., 194(1), pp. 344–362. [CrossRef]
Chapman, C. D. , Saitou, K. , and Jakiela, M. J. , 1994, “ Genetic Algorithm as an Approach to Configuration and Topology Design,” ASME J. Mech. Des., 116(4), pp. 1005–1012. [CrossRef]
Wang, S. Y. , and Tai, K. , 2005, “ Structural Topology Design Optimization Using Genetic Algorithms With a Bit-Array Representation,” Comput. Methods Appl. Mech. Eng., 194(36–38), pp. 3749–3770. [CrossRef]
Eschenauer, H. A. , Kobelev, V. V. , and Schumacher, A. , 1994, “ Bubble Method for Topology and Shape Optimization of Structures,” Struct. Optim., 8(1), pp. 42–51. [CrossRef]
Amstutz, S. , and Novotny, A. A. , 2010, “ Topological Optimization of Structures Subject to Von Mises Stress Constraints,” Struct. Multidiscip. Optim., 41(3), pp. 407–420. [CrossRef]
Turevsky, I. , and Suresh, K. , 2011, “ Efficient Generation of Pareto-Optimal Topologies for Compliance Optimization,” Int. J. Numer. Methods Eng., 87(12), pp. 1207–1228. [CrossRef]
Yang, R. J. , and Chen, C. J. , 1996, “ Stress-Based Topology Optimization,” Struct. Multidiscip. Optim., 12(2–3), pp. 98–105. [CrossRef]
Kreisselmeier, G. , and Steinhauser, R. , 1979, “ Systematic Control Design by Optimizing a Vector Performance Index,” IFAC Symposium on Computer-Aided Design of Control Systems, Zurich, Switzerland, pp. 113–117.
Duysinx, P. , and Bendsøe, M. , 1998, “ Topology Optimization of Continuum Structures With Local Stress Constraints,” Int. J. Numer. Methods Eng., 43(8), pp. 1453–1478. https://doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3C1453::AID-NME480%3E3.0.CO;2-2
Pereira, J. T. , Fancello, E. A. , and Barcello, C. S. , 2004, “ Topology Optimization of Continuum Structures With Material Failure Constraints,” Struct. Multidiscip. Optim., 26(1–2), pp. 50–66. [CrossRef]
Bruggi, M. , and Venini, P. , 2008, “ A Mixed FEM Approach to Stress-Constrained Topology Optimization,” Int. J. Numer. Methods Eng., 73(12), pp. 1693–1714. [CrossRef]
Cheng, G. D. , and Jiang, Z. , 1992, “ Study on Topology Optimization With Stress Constraints,” Eng. Optim., 20(2), pp. 129–148. [CrossRef]
Kirsch, U. , 1990, “ On Singular Topologies in Optimum Structural Design,” Struct. Multidiscip. Optim., 2(3), pp. 133–142. https://link.springer.com/article/10.1007/BF01836562
Cheng, G. D. , and Guo, X. , 1997, “ ε-Relaxed Approach in Structural Topology Optimization,” Struct. Multidiscip. Optim., 13(4), pp. 258–266. https://link.springer.com/article/10.1007/BF01197454
Guilherme, C. E. M. , and Fonseca, J. S. O. , 2007, “ Topology Optimization of Continuum Structures With Epsilon-Relaxed Stress Constraints,” Solid Mechanics in Brazil, Vol. 1, M. Alves and H. S. da Costa Mattos , eds., ABCM, Rio de Janeiro, Brazil, pp. 239–250.
Bruggi, M. , 2008, “ On an Alternative Approach to Stress Constraints Relaxation in Topology Optimization,” Struct. Multidiscip. Optim., 36(2), pp. 125–141. [CrossRef]
Le, C. , Norato, J. , Bruns, T. , Ha, C. , and Tortorelli, D. , 2010, “ Stress-Based Topology Optimization for Continua,” Struct. Multidiscip. Optim., 41(4), pp. 605–620. [CrossRef]
París, J. , Navarrina, F. , Colominas, I. , and Casteleiro, M. , 2010, “ Block Aggregation of Stress Constraints in Topology Optimization of Structures,” Adv. Eng. Software, 41(3), pp. 433–441. [CrossRef]
Luo, Y. , Wang, M. Y. , and Kang, Z. , 2013, “ An Enhanced Aggregation Method for Topology Optimization With Local Stress Constraints,” Comput. Methods Appl. Mech. Eng., 254, pp. 31–41. [CrossRef]
Rong, J. H. , Xiao, T. T. , Yu, L. H. , Rong, X. P. , and Xie, Y. J. , 2016, “ Continuum Structural Topological Optimizations With Stress Constraints Based on Active Constraint Technique,” Int. J. Numer. Methods Eng., 108(4), pp. 326–360. https://doi.org/10.1002/nme.5234
Bruggi, M. , and Duysinx, P. , 2012, “ Topology Optimization for Minimum Weight and Stress Constraints,” Struct. Multidiscip. Optim., 46(3), pp. 369–384. [CrossRef]
Guo, X. , Zhang, W. S. , Wang, M. Y. , and Wei, P. , 2011, “ Stress-Related Topology Optimization Via Level Set Approach,” Comput. Methods Appl. Mech. Eng., 200(47–48), pp. 3439–3452. [CrossRef]
Zhang, W. S. , Guo, X. , Wang, M. Y. , and Wei, P. , 2013, “ Optimal Topology Design of Continuum Structures With Stress Concentration Alleviation Via Level Set Method,” Int. J. Numer. Methods, 93(9), pp. 942–959. https://doi.org/10.1002/nme.4416
Wang, M. , and Li, L. , 2013, “ Shape Equilibrium Constraint: A Strategy for Stress-Constrained Structural Topology Optimization,” Struct. Multidiscip. Optim., 47(3), pp. 335–352. [CrossRef]
Jeong, S. H. , Park, S. H. , Choi, D. H. , and Yoon, G. H. , 2012, “ Topology Optimization Considering Static Failure Theories for Ductile and Brittle Materials,” Comput. Struct., 110–111, pp. 116–132. https://doi.org/10.1016/j.compstruc.2012.07.007
Luo, Y. , and Kang, Z. , 2012, “ Topology Optimization of Continuum Structures With Drucker–Prager Yield Stress Constraints,” Comput. Struct., 90–91, pp. 65–75. [CrossRef]
Takezawa, A. , Yoon, G. H. , Jeong, S. H. , Kobashi, M. , and Kitamura, M. , 2014, “ Structural Topology Optimization With Strength and Heat Conduction Constraints,” Comput. Methods Appl. Mech. Eng., 276, pp. 341–361. [CrossRef]
Bendsøe, M. P. , and Sigmund, O. , 2003, Topology Optimization: Theory, Methods and Applications, Springer, New York.
Matsui, K. , and Terada, K. , 2004, “ Continuous Approximation of Material Distribution for Topology Optimization,” Int. J. Numer. Methods Eng., 59(14), pp. 1925–1944. [CrossRef]
Kumar, A. V. , and Parthasarathy, A. , 2011, “ Topology Optimization Using B-Spline Finite Elements,” Struct. Multidiscip. Optim., 44(4), pp. 471–481. [CrossRef]
Bruns, T. E. , and Tortorelli, D. A. , 2001, “ Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms,” Comput. Methods Appl. Mech. Eng., 190(26–27), pp. 3443–3459. https://doi.org/10.1016/S0045-7825(00)00278-4
Bourdin, B. , 2001, “ Filters in Topology Optimization,” Int. J. Numer. Methods Eng., 50(9), pp. 2143–2158. [CrossRef]
Guest, J. K. , Prévost, J. , and Belytschko, T. , 2004, “ Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions,” Int. J. Numer. Methods Eng., 61(2), pp. 238–254. [CrossRef]
Verbart, A. , Langehaar, M. , and van Keulen, F. , 2017, “ A Unified Aggregation and Relaxation Approach for Stress-Constrained Topology Optimization,” Struct. Multidiscip. Optim., 55(2), pp. 663–679. [CrossRef]
Bendsøe, M. P. , Diaz, A. , and Kikuchi, N. , 1993, “ Topology and Generalized Layout Optimization of Elastic Structures,” Topology Design of Structures, M. P. Bendsøe and C. A. Mota Soares , eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 159–205.
Bertsekas, D. P. , 1999, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA.
Sigmund, O. , and Petersson, J. , 1998, “ Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima,” Struct. Multidiscip. Optim., 16(1), pp. 68–75. https://doi.org/10.1007/BF01214002
Haber, R. B. , Jog, C. S. , and Bendsoe, M. P. , 1996, “ A New Approach to Variable-Topology Shape Design Using a Constraint on the Perimeter,” Struct. Optim., 11(1–2), pp. 1–12. https://doi.org/10.1007/BF01279647
Yamada, T. , Izui, K. , Nishiwaki, S. , and Takezawa, A. , 2010, “ A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy,” Comput. Methods Appl. Mech. Eng., 199(45–48), pp. 2876–2891. [CrossRef]
Haug, E. J. , Choi, K. K. , and Komkov, V. , 1986, Design Sensitivity Analysis of Structural Systems (Mathematics in Science and Engineering Series), Academic Press, Orlando, FL.
Kumar, A. V. , 2000, “ A Sequential Optimization Algorithm Using Logarithmic Barriers: Application to Structural Optimization,” ASME J. Mech. Des., 122(3), pp. 271–277. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Topology optimization results for shear loaded bracket: (a) shear load = 10 MPa and (b) shear load = 50 MPa

Grahic Jump Location
Fig. 2

Convergence of mass and stress for two bar frame

Grahic Jump Location
Fig. 3

Plane stress model of a loaded L-shaped structure

Grahic Jump Location
Fig. 4

Topology optimization results for L-shaped structure: (a) compliance minimization, (b) von Mises stress distribution, (c) minimize mass with constraint on stress (m = 3), and (d) von Mises stress distribution

Grahic Jump Location
Fig. 5

Convergence of mass and stress for L-shaped bracket

Grahic Jump Location
Fig. 6

Topology convergence history

Grahic Jump Location
Fig. 7

Effect of the weighting parameter α

Grahic Jump Location
Fig. 8

Optimal topology versus the power of strain energy density: (a) m=1, (b) m=2, (c) m=6, and (d) m=8

Grahic Jump Location
Fig. 9

Convergence of maximum von Mises stress for L-bracket

Grahic Jump Location
Fig. 10

Feasible region for portal frame design

Grahic Jump Location
Fig. 11

Portal Frame: minimization of mass with constraint on stress (m = 3): (a) optimal topology and (b) von Mises stress (MPa)

Grahic Jump Location
Fig. 12

Portal frame: optimal topology versus the power of strain energy density: (a) m=1, (b) m=3, and (c) m=6

Grahic Jump Location
Fig. 13

Convergence of mass and stress for portal frame

Grahic Jump Location
Fig. 14

Convergence of maximum von Mises stress for the portal frame

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In