0
research-article

Toward the Effect of Dependent Interval Distribution Parameters on Reliability Prediction

[+] Author and Article Information
Yao Cheng

Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO
ycbm7@mst.edu

Xiaoping Du

Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO
dux@mst.edu

1Corresponding author.

ASME doi:10.1115/1.4039193 History: Received October 07, 2017; Revised January 22, 2018

Abstract

Random variables are commonly encountered in engineering applications, and their distributions are required for analysis and design, especially for reliability prediction during the design process. Distribution parameters are usually estimated using samples. In many applications, samples are in the form of intervals, and the estimated distribution parameters will also be in intervals. Traditional reliability methodologies assume independent interval distribution parameters, but as shown in this study, the parameters are actually dependent since they are estimated from the same set of samples. This study investigates the effect of the dependence of distribution parameters on the accuracy of reliability analysis results. The major approach is numerical simulation and optimization. This study demonstrates that the independent distribution parameter assumption makes the estimated reliability bounds wider than the true bounds. The reason is that the actual combination of the distribution parameters may not include the entire box-type domain assumed by the independent interval parameter assumption. The results of this study not only reveal the cause of the imprecision of the independent distribution parameter assumption, but also demonstrate a need of developing new reliability methods to accommodate dependent distribution parameters.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In