0
research-article

Automatic Discovery of Design Task Structure Using Deep Belief Nets

[+] Author and Article Information
Lijun Lan

Department of Mechanical Engineering National University of Singapore, Singapore 117576
lijunlan@u.nus.edu

Ying Liu

Mechanical and Manufacturing Engineering School of Engineering Cardiff University, Cardiff CF24 3AA, UK
LiuY81@Cardiff.ac.uk

Wen Feng Lu

Department of Mechanical Engineering National University of Singapore, Singapore 117576
mpelwf@nus.edu.sg

1Corresponding author.

ASME doi:10.1115/1.4036198 History: Received May 14, 2015; Revised March 02, 2017

Abstract

With the arrival of cyber physical world and an extensive support of advanced IT infrastructure, nowadays it is possible to obtain the footprints of design activities through emails, design journals, change logs, and different forms of social data. In order to manage a more effective design process, it is essential to learn from the past by utilizing these valuable sources and understand, for example, what design tasks are actually carried out, their interactions and how they impact each other. In this paper, a computational approach based on deep belief nets (DBN) is proposed to automatically uncover design tasks and quantify their interactions from design document archives. Firstly, a DBN topic model with real-valued units is developed to learn a set of intrinsic topic features from a simple word-frequency based input representation. The trained DBN model is then utilized to discover design tasks by unfolding hidden units by sets of strongly connected words, followed by estimating their interactions by their co-occurrence frequency in a hidden representation space. Finally, the proposed approach is demonstrated through a real-life case study using a design email archive spanning for more than two years.

Copyright (c) 2017 by ASME
Topics: Design
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In