de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M., 2008, *Computational Geometry: Algorithms and Applications*, 3rd ed., Springer-Verlag, Berlin, Germany.

Roy, S., Das, S., and Nandy, S. C., 2007, “Shortest Monotone Descent Path Problem in Polyhedral Terrain,” Comput. Geom.: Theory Appl., 37(2), pp. 115–133.

[CrossRef]Weber, G. H., Dillard, S. E., Carr, H., Pascucci, V., and Hamann, B., 2007, “Topology-Controlled Volume Rendering,” IEEE Trans. Vis. Comput. Graph., 13(2), pp. 330–341.

[CrossRef] [PubMed]Carr, H., Snoeyink, J., and van de Panne, M., 2010, “Flexible Isosurfaces: Simplifying and Displaying Scalar Topology Using the Contour Tree,” Comput. Geom.: Theory Appl., 43(1), pp. 42–58.

[CrossRef]Wei, X., and Joneja, A., 2011, “On Minimum Link Monotone Path Problems,” ASME J. Comput. Inf. Sci. Eng., 11(3), p. 031002.

[CrossRef]Wei, X., Joneja, A., and Mount, D. M., 2012, “Optimal Uniformly Monotone Partitioning of Polygons With Holes,” Comput.-Aided Des., 44, pp. 1235–1252.

[CrossRef]Chiang, Y. J., Lenz, T., Lu, X., and Rote, G., 2005, “Simple and Optimal Output-Sensitive Construction of Contour Trees Using Monotone Paths,” Comput. Geom.: Theory Appl., 30, pp. 165–195.

[CrossRef]Yang, P., and Qian, X., 2008, “Adaptive Slicing of Moving Least Squares Surfaces: Toward Direct Manufacturing of Point Set Surfaces,” ASME J. Comput. Inf. Sci. Eng., 8(13), p. 031003.

[CrossRef]Fayolle, P. A., Pasko, A., Schmitt, B., and Mirenkov, N., 2005, “Constructive Heterogeneous Object Modeling Using Signed Approximate Real Distance Functions,” ASME J. Comput. Inf. Sci. Eng., 6(3), pp. 221–229.

[CrossRef]Singh, P., and Dutta, D., 2001, “Multi-Direction Slicing for Layered Manufacturing,” ASME J. Comput. Inf. Sci. Eng., 1(2), pp. 129–142.

[CrossRef]de Berg, M., and van Kreveld, M. J., 1997, “Trekking in the Alps Without Freezing or Getting Tired,” Algorithmica, 18(3), pp. 306–323.

[CrossRef]van Kreveld, M., van Oostrum, R., Bajaj, C., Pascucci, V., and Schikore, D. R., 1997, “Contour Trees and Small Seed Sets for Isosurface Traversal,” Proceedings of the 13th Annual Symposium on Computational Geometry, pp. 212–220.

Shammaa, H., Suzuki, H., and Ohtake, Y., 2011, “Creeping Contours: A Multilabel Image Segmentation Method for Extracting Boundary Surfaces of Parts in Volumetric Images,” ASME J. Comput. Inf. Sci. Eng., 11(1), p. 011007.

[CrossRef]Sarkar, R., Zhu, X., Gao, J., Guibas, L. J., and Mitchell, J. S. B., 2008, “Isocontour Queries and Gradient Descent With Guaranteed Delivery in Sensor Networks,” Proceedings of the 27th Annual IEEE Conference on Computer Communications, pp. 1175–1183.

Nykänen, M., and Ukkonen, E., 1994, “Finding Lowest Common Ancestors in Arbitrarily Directed Trees,” Inf. Process. Lett., 50(6), pp. 307–310.

[CrossRef]Thorup, M., 2004, “Compact Oracles for Reachability and Approximate Distances in Planar Digraphs,” J. ACM, 51, pp. 993–1024.

[CrossRef]Bender, M. A., Farach-Colton, M., Pemmasani, G., Skiena, S., and Sumazin, P., 2005, “Lowest Common Ancestors in Trees and Directed Acyclic Graphs,” J. Algorithms, 57(2), pp. 75–94.

[CrossRef]Alstrup, S., Gavoille, C., Kaplan, H., and Rauhe, T., 2004, “Nearest Common Ancestors: A Survey and a New Algorithm for a Distributed Environment,” Theory Comput. Syst., 37, pp. 441–456.

[CrossRef]Harel, D., and Tarjan, R., 1984, “Fast Algorithms for Finding Nearest Common Ancestor,” SIAM J. Sci. Comput., 13, pp. 338–355.

[CrossRef]Schieber, B., and Vishkin, U., 1988, “On Finding Lowest Common Ancestors: Simplification and Parallelization,” SIAM J. Sci. Comput., 17, pp. 1253–1262.

[CrossRef]Berkman, O., and Vishkin, U., 1994, “Finding Level Ancestors in Trees,” J. Comput. Syst. Sci., 48, pp. 214–230.

[CrossRef]Bender, M., and Farach-Colton, M., 2000, “The LCA Problem Revisited,” Proceedings of Latin American Theoretical Informatics, pp. 88–94.

Sleator, D. D., and Tarjan, R. E., 1983, “A Data Structure for Dynamic Trees,” J. Comput. Syst. Sci., 26, pp. 362–391.

[CrossRef]Cole, R., and Hariharan, R., 2005, “Dynamic LCA Queries on Trees,” SIAM J. Sci. Comput., 34(4), pp. 894–923.

[CrossRef]Gabow, H. N., 1990, “Data Structure for Weighted Matching and Nearest Common Ancestors With Linking,” Proceedings of the 1st Annual ACM Symposium on Discrete Algorithms, pp. 434–443.

Eckhardt, S., Mühling, A., and Nowak, J., 2007, “Fast Lowest Common Ancestor Computations in Dags,” Proceedings of the 15th Annual European Conference on Algorithms, pp. 705–716.

Rebane, G., and Pearl, J., 1987, “The Recovery of Causal Poly-Trees From Statistical Data,” Proceedings of the 3rd Workshop Uncertainty in Artificial Intelligence, pp. 222–228.

Kim, J. H., and Pearl, J., 1983, “A Computational Model for Causal and Diagnostic Reasoning in Inference Engines,” Proceedings of the 8th International Joint Conference on Artificial Intelligencepp. 190–193.

Lai, K. J., 2008, “Complexity of Union-Split-Find Problems,” M.S. thesis, Massachusetts Institute of Technology, Erik Demaine, Adviser.

Patrascu, M., and Demaine, E. D., 2004, “Lower Bounds for Dynamic Connectivity,” Proceedings of the 36th ACM symposium on Theory of Computing, pp. 546–553.

Carr, H., Snoeyink, J., and Axen, U., 2003, “Computing Contour Trees in all Dimensions,” Comput. Geom.: Theory Appl., 24(2), pp. 75–94.

[CrossRef]Pascucci, V., 2001, “On the Topology of the Level Sets of a Scalar Field,” Proceedings the 13th Canadian Conference on Computational Geometry, pp. 141–144.

Edelsbrunner, H., Harer, J., Mascarenhas, A., Pascucci, V., and Snoeyink, J., 2008, “Time-Varying Reeb Graphs for Continuous Space-Time Data,” Comput. Geom.: Theory Appl., 41(3), pp. 149–166.

[CrossRef]Edelsbrunner, H., and Harer, J., 2002, “Jacobi Sets of Multiple Morse Functions,” *Foundations of Computational Mathematics*, Cambridge University, Cambridge, UK, pp. 35–57.

Mascarenhaus, A., and Snoeyink, J., 2005, “Implementing Time-Varying Contour Trees,” Proceedings of the 21st Annual Symposium on Computational Geometry, pp. 370–371.

Kirkpatrick, D., 1983, “Optimal Search in Planar Subdivisions,” SIAM J. Sci. Comput., 12(1), pp. 28–35.

[CrossRef]