Latombe, J. C., 1991, "*Robot Motion Planning*", Kluwer Academic Publishers, Norwell, Massachusetts.

Lozano-Perez, T., 1983, “Spatial Planning: A Configuration Space Approach,” IEEE Trans. Comput., 100 (32), pp. 108–120.

[CrossRef]Wise, K. D., and Bowyer, A., 2000, “A Survey of Global Configuration-Space Mapping Techniques for a Single Robot in a Static Environment,” Int. J. Robot. Res., 19 (8), pp. 762–779.

[CrossRef]Brost, R. C., and Goldberg, K. Y., 1996, “A Complete Algorithm for Designing Planar Fixtures Using Modular Components,” IEEE Trans. Rob. Autom., 12 (1), pp. 31–46.

[CrossRef]McCarthy, J. M., and Joskowicz, L., 2001, “Kinematic Synthesis,” "*Formal Engineering Design Synthesis*", Cambridge University Press, New York, p. 321.

Ilies, H. T., and Shapiro, V., 1999, “Dual of Sweep,” Comput.-Aided Des., 31 (3), pp. 185–201.

[CrossRef]Middleditch, A. E., 1988, “Application of Vector Sum Operator,” Comput.-Aided Des., 20 (4), pp. 183–188.

[CrossRef]Boissonnat, J. D., De Lange, E., and Teillaud, M., 1997, “Minkowski Operations for Satellite Antenna Layout,” "*Proceedings of the Thirteenth Annual Symposium on Computational Geometry*", ACM, New York, pp. 67–76.

Hartquist, E. E., Menon, J. P., Suresh, K., Voelcker, H. B., and Zagajac, J., 1999, “A Computing Strategy for Applications Involving Offsets, Sweeps, and Minkowski Operations,” Comput.-Aided Des., 31 (3), pp. 175–183.

[CrossRef]Li, W., and McMains, S., 2010, “A GPU-Based Voxelization Approach to 3D Minkowski Sum Computation,” "*Proceedings of the 14th ACM Symposium on Solid and Physical Modeling*", ACM, pp. 31–40.

Serra, J., 1983, "*Image Analysis and Mathematical Morphology*", Academic Press, Inc., Orlando, FL.

Requicha, A. A. G., 1980, “Representations for Rigid Solids: Theory, Methods, and Systems,” ACM Comput. Surv., 12 (4), pp. 437–464.

[CrossRef]Martin, R. R., and Stephenson, P. C., 1990, “Sweeping of Three-Dimensional Objects,” Comput.-Aided Des., 22 (4), pp. 223–234.

[CrossRef]Merlet, J. P., 1999, “Determination of 6D Workspaces of Gough-Type Parallel Manipulator and Comparison Between Different Geometries,” Int. J. Robot. Res., 18 (9), pp. 902–916.

[CrossRef]Tsai, Y. C., and Soni, A. H., 1983, “An Algorithm for the Workspace of a General n-R Robot,” ASME J. Mech. Des., 105 , pp. 52–57.

[CrossRef]Lysenko, M., Nelaturi, S., and Shapiro, V., 2010, “Group Morphology With Convolution Algebras,” ACM Symposium on Solid and Physical Modeling 2010.

Nelaturi, S., and Shapiro, V., 2011, “Configuration Products and Quotients in Geometric Modeling,” Comput.-Aided Des., 43 , pp. 781–794.

[CrossRef]Yershova, A., Jain, S., LaValle, S. M., and Mitchell, J. C., 2010, “Generating Uniform Incremental Grids on SO(3) Using the Hopf Fibration,” Int. J. Robot. Res., 29 (7), pp. 801–812.

[CrossRef]Caine, M., 1994, “The Design of Shape Interactions Using Motion Constraints,” "*Proceedings of the 1994 IEEE International Conference on Robotics and Automation*", pp. 366–371.

Canny, J., 1988, "*The Complexity of Robot Motion Planning ACM Doctoral Dissertation Awards*", MIT Press, Cambridge, MA.

Donald, B. R., 1987, “A Search Algorithm for Motion Planning With Six Degrees of Freedom,” Artif. Intell., 31 (3), pp. 295–353.

[CrossRef]Sacks, E., and Bajaj, C., 1998, “Sliced Configuration Spaces for Curved Planar Bodies,” Int. J. Robot. Res., 17 (6), pp. 639–651.

[CrossRef]Lien, J. M., 2008, “Covering Minkowski Sum Boundary Using Points With Applications,” Comput. Aided Geom. Des., 25 (8), pp. 652–666.

[CrossRef]Varadhan, G., and Manocha, D., 2006, “Accurate Minkowski Sum Approximation of Polyhedral Models,” Graphical Models, 68 (4), pp. 343–355.

[CrossRef]Schapira, P., 1991, “Operations on Constructible Functions,” J. Pure Appl. Algebra, 72 (1), pp. 83–93.

[CrossRef]Kavraki, L. E., 1995, “Computation of Configuration-Space Obstacles Using the Fast Fourier Transform,” IEEE Trans. Rob. Autom., 11 (3), pp. 408–413.

[CrossRef]Muhlthaler, H., and Pottmann, H., 2003, “Computing the Minkowski Sum of Ruled Surfaces,” Graphical Models, 65 (6), pp. 369–384.

[CrossRef]Muradyan, R. M., 1981, “On Discrete Subgroups of the Three-Dimensional Rotation Group,” Theor. Math. Phys., 46 (3), pp. 219–227.

[CrossRef]Chirikjian, G. S., Kyatkin, A. B., and Buckingham, A. C., 2001, “Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups,” ASME Appl. Mech. Rev., 54 .

[CrossRef]Roerdink, J. B. T. M., 2000, “Group Morphology,” Pattern Recogn., 33 (6), pp. 877–895.

[CrossRef]Mitchell, J. C., 2008, “Sampling Rotation Groups by Successive Orthogonal Images,” SIAM J. Sci. Comput. (USA), 30 , pp. 525–547.

[CrossRef]Armstrong, M. A., 1983, "*Basic Topology*", Springer, New York.

Burns, K. H., and Gidea, M., 2005, "*Differential Geometry and Topology: With a View to Dynamical Systems*", CRC Press, Boca Raton, Florida.

Hatcher, A., 2002, "*Algebraic Topology*", Cambridge University Press, Cambridge.

Frigo, M., and Johnson, S. G., 2005, “The Design and Implementation of FFTW3,” "

*Proc. IEEE*", 93 (2), pp. 216–231.

[CrossRef]Madisetti, V., and Williams, D. B., 1998, "*The Digital Signal Processing Handbook*", CRC, Boca Raton, Florida.

NVIDIA Corporation, 2012, CUFFT Library, Technical Report. Report number PG-05327-040_v01

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., and Fasih, A., 2009, “PyCUDA: GPU Run-Time Code Generation for High-Performance Computing,” Arxiv preprint arXiv, p. 911.

Min, P., 2005, BINVOX, “A 3D Mesh Voxelizer.”

Dong, Z., Chen, W., Bao, H., Zhang, H., and Peng, Q., 2004, “Real-Time Voxelization for Complex Polygonal Models,” "*Proceedings of the 12th Pacific Conference on Computer Graphics and Applications (PG 2004)*", pp. 43–50.

Eisemann, E., and Décoret, X., 2008, “Single-Pass GPU Solid Voxelization for Real-Time Applications,” "*Proceedings of Graphics Interface 2008*", Canadian Information Processing Society, pp. 73–80.

Nukada, A., Ogata, Y., Endo, T., and Matsuoka, S., 2009, “Bandwidth Intensive 3-D FFT Kernel for GPUs Using CUDA,” "*International Conference for High Performance Computing, Networking, Storage and Analysis (SC 2008), IEEE*", pp. 1–11.

Chen, B., and Kaufman, A., 2000, “3D Volume Rotation Using Shear Transformations,” Graphical Models, 62 (4), pp. 308–322.

[CrossRef]Cox, R. W., and Tong, R., 2002, “Two- and Three-Dimensional Image Rotation Using the FFT,” IEEE Trans. Image Process., 8 (9), pp. 1297–1299.

[CrossRef]Toffoli, T., and Quick, J., 1997, “Three-Dimensional Rotations by Three Shears,” Graph. Models Image Process., 59 (2), pp. 89–95.

[CrossRef]Welling, J. S., Eddy, W. F., and Young, T. K., 2006, “Rotation of 3D Volumes by Fourier-Interpolated Shears,” Graphical Models, 68 (4), pp. 356–370.

[CrossRef]Ruijters, D., and Thévenaz, P., 2012, “GPU Prefilter for Accurate Cubic B-Spline Interpolation,” Comput. J., 55 , pp. 15–20.

[CrossRef]