Hoffmann, C. M., and Joan-Arinyo, R., 2002, “Parametric modeling,” "*Handbook of CAGD*", G.Farin, J.Hoschek, and M.-S.Kim, Eds., Elsevier, New York, pp. 519–541.

Requicha, A. A. G., 1980, “Representations for Rigid Solids: Theory, Methods, and Systems,” ACM Comput. Surv., 12 , pp. 437–464.

[CrossRef]Hoffmann, C. M., 2005, “Constraint-Based Computer-Aided Design,” ASME J. Comput. Inf. Sci. Eng., 5 , pp. 182–187.

[CrossRef]Chung, J., and Schussel, M., 1990, “Technical Evaluation of Variational and Parametric Design,” Comput. Eng., 1 , pp. 289–298.

Owen, J. C., 1991, “Algebraic Solution for Geometry from Dimensional Constraints,” ACM Symposium Foundations of Solid Modeling, pp. 397–407.

Bouma, W., Fudos, I., Hoffmann, C. M., Cai, J., and Paige, R., 1995, “A Geometric Constraint Solver,” Comput.-Aided Des., 27 , pp. 487–501.

[CrossRef]Shah, J., and Mantyla, M., 1995, "*Parametric and Feature-Based CAD/CAM*", Wiley, New York, NY.

Venkatamaran, S., 2000, “Integration of Design by Features and Feature Recognition,” Master’s thesis, Arizona State University.

Bidarra, R., 1999, “Validity Maintenance in Semantic Feature Modeling,” PhD thesis, Technische Universiteit Delft.

Braid. I., 1996, “Non-Local Blending of Boundary Models,” Comput.-Aided Des., 29 , pp. 89–100.

[CrossRef]Hardee, E., Chang, K.-H., Tu, J., Choi, K. K., Grindeanu, I., and Yu, X., 1999, “A CAD-Based Design Parameterization for Shape Optimization of Elastic Solids,” Adv. Eng. Software, 30 , pp. 185–199.

[CrossRef]Bettig, B., Bapat, V., and Bharadwaj, B., 2005, “Limitations of Parametric Operators for Supporting Systematic Design,” in "*Proceedings of ASME Design Engineering Technical Conferences and Computers in Engineering Conference*", DETC2005.

Ilies, H. T., 2006, “Parametric Solid Modeling,” in "*Proceedings of the ASME Design Engineering Technical Conferences and Computers in Engineering Conference*", DETC2006.

Clarke, C., 2009, “Super Models,” Engineer, 294 , pp. 36–38.

Samuel, S., 2006, “CAD Package Pumps up the Parametrics,” Mach. Des., 78 , pp. 82–84.

Wu, N., and Ilies, H., 2007, “Motion-Based Shape Morphing of Solid Models,” in "*Proceedings of the ASME Design Engineering Technical Conferences and Computers in Engineering Conference*", IDETC2007.

Siemens PLM Software. Synchronous Technology, 2011.

Wang, Y., 2007, “Solving Interval Constraints by Linearization in Computer-Aided Design,” Reliab. Comput., 13 , pp. 211–244.

[CrossRef]Nahm, Y.-E., and Ishikawa, H., 2006, “A New 3D-CAD System for Set-Based Parametric Design,” Int. J. Adv. Manuf. Technol., 29 , pp. 137–150.

[CrossRef]Hoffmann, C. M., and Joan-Arinyo, R., 2005, “A Brief on Constraint Solving,” Comput.-Aided Des., 2 , pp. 655–663.

Kramer, G. A., 1991, “Using Degree of Freedom Analysis to Solve Geometric Constraint Systems,” "*Symposium on Solid Modeling Foundations and CAD/CAM Applications*", J.Rossignac and J.Turner, eds., pp. 371–378.

Kramer, G. A., 1992, "*Solving Geometric Constraint Systems*", MIT, Cambridge.

Hsu, C.-Y., and Brüderlin, B., 1997, “A Hybrid Constraint Solver Using Exact and Iterative Geometric Constructions,” "*CAD Systems Development: Tools and Methods*", D.Roller and P.Brunet, eds., Springer-Verlag, Berlin, 1997, pp. 266–298.

Latham, R., and Middleditch, A., 1996, “Connectivity Analysis: A Tool for Processing Geometric Constraints,” Comput.-Aided Des., 28 , pp. 917–928.

[CrossRef]Freeman-Benson, B., Maloney, J., and Borning, A., 1990, “An Incremental Constraint Solver,” Commun. ACM, 33 , pp. 54–63.

[CrossRef]Veltkamp, R., and Arbab, F., 1992, “Geometric Constraint Propagation With Quantum Labels,” in "*Eurographics Workshop on Computer Graphics and Mathematics*", pp. 211–228.

Borning, A., Anderson, R., and Freeman-Benson, B., 1996, “Indigo: A Local Propagation Algorithm for Inequality Constraints, in ACM UIST ’96 , pp.
129–136.

Aldefeld, B., 1998, “Variation of Geometric Based on a Geometric-Reasoning Method,” Comput.-Aided Des., 20 , pp. 117–126.

[CrossRef]Brüderlin, B. D., 1988, “Rule-Based Geometric Modelling,” PhD thesis, Institut für Informatik der ETH Zürich.

Brüderlin, B. D., 1990, “Symbolic Computer Geometry for Computer Aided Geometric Design,” Advances in Design and Manufacturing Systems pp. 177–181.

Brüderlin, B. D., 1993, Using Geometric Rewrite Rules for Solving Geometric Problems Symbolically,” Theoretical Computer Science116 , pp. 291–303.

[CrossRef]Sohrt, W., and Brüderlin, B. D., 1991, Interaction with Constraints in 3D Modeling.Int. J. Comput. Geom. Appl., 1 , pp. 405–425.

[CrossRef]Yamaguchi, Y., and Kimura, F., 1990, “A Constraint Modeling System for Variational Geometry,” "*Geometric Modeling for Product Engineering*", J.U.Turner, M.J.Wozny, and K.Preiss, eds., Elsevier, North Holland, pp. 221–233.

Sunde, G., 1987, “A CAD System With Declarative Specification of Shape,” "*Eurographics Workshop on Intelligent CAD Systems*", pp. 90–105.

Verroust, A., Schonek, F., and Roller, D., 1992, “Rule-Oriented Method for Parameterized Computer-Aided Design,” Comput.-Aided Des., 24 , pp. 531–540.

[CrossRef]Joan-Arinyo, R., and Soto, A., 1997, “A Correct Rule-Based Geometric Constraint Solver,” Comput. Graphics, 21 , pp. 599–609.

[CrossRef]Joan-Arinyo, R., and Soto, A., 1997, “A Ruler-and-Compass Geometric Constraint Solver,” "*Product Modeling for Computer Integrated Design and Manufacture*", M.J.Pratt, R.D.Sriram, and M.J.Wozny, eds., pp. 384–393.

Buchberger, B., 1985, “Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory,” "*Multidimensional Systems Theory*", D. Reidel Publishing, pp. 184–232.

Chou, S.-C., 1988, “An Introduction to Wu’s Method for Mechanical Theorem Proving in Geometry,” J. Automated Reasoning, 4 , pp. 237–267.

[CrossRef]Wu, W.-T., 1994, “Mechanical Theorem Proving in Geometries,” "*Texts and Monographs in Symbolic Computations*", B.Buchberger and G.E.Collins, eds., Springer-Verlag, Berlin.

Buchanan, S. A., and de Pennington, A., 1993, “Constraint Definition System: A Computer-Algebra Based Approach to Solving Geometric-Constraint Problems,” Comput.-Aided Des., 25 , pp. 741–750.

[CrossRef]Kondo, K., 1992, “Algebraic Method for Manipulation of Dimensional Relationships in Geometric Models,” Comput.-Aided Des., 24 , pp. 141–147.

[CrossRef]Borning, A., 1981, “The Programming Language Aspects of ThingLab, a Constrained Oriented Simulation Laboratory,” ACM Trans. Program. Lang. Syst., 3 , pp. 353–387.

[CrossRef]Hillyard, R., and Braid, I., 1978, “Characterizing Non-Ideal Shapes in Terms of Dimensions and Tolerances,” "

*Proceedings of ACM Computer Graphics*", pp. 234–238.

[CrossRef]Sutherland, I., 1963, “Sketchpad, a Man-Machine Graphical Communication System,” "*in Proceedings of the Spring Joint Computing Conference*", IFIPS, pp. 329–345.

Light, R., and Gossard, D., 1982, “Modification of Geometric Models Through Variational Geometry, Comput.-Aided Des., 14 , pp. 209–214.

[CrossRef]Lin, V. C., Gossard, D. C., and Light, R. A., 1981, “Variational Geometry in Computer-Aided Design,” ACM Comput. Graphics, 15 , pp. 171–177.

[CrossRef]Nelson, G., 1985, “Juno, a Constraint-Based Graphics System. SIGGRAPH, pp. 235–243.

[CrossRef]Allgower, E., and Georg, K., 1993, “Continuation and Path Following,” Acta Numerica, 7 , pp. 1–64.

[CrossRef]Lamure, H., and Michelucci, D., 1995, “Solving Geometric Constraints by Homotopy,” "*Third Symposium on Solid Modeling and Applications*", C.M.Hoffmann and J.Rossignac, eds., pp. 263–269.

Durand, C., 1998, “Symbolic and Numerical Techniques for Constraint Solving,” PhD thesis, Computer Science, Purdue University.

Wu, W.-T., 1986, “Basic Principles of Mechanical Theorem Proving in Geometries,” J. Syst. Sci. Math. Sci., 4 , pp. 207–235.

Chou, S.-C., Gao, X.-S., and Zhang, J.-Z., 1996, “Automated Generation of Readable Proofs With Geometric Invariants: Multiple and Shortest Proof Generation,” J. Automat. Reason.7 , pp. 325–347.

[CrossRef]Chou, S.-C., Gao, X.-S., and Zhang, J.-Z., 1996, “Automated Generation of Readable Proofs With Geometric Invariants: Theorem Proving With Full Angles,” J. Automat. Reason., 7 , pp. 349–370.

[CrossRef]Moll, M., and Kavraki, L., 2006, “Path Planning for Deformable Linear Objects,” IEEE J. Rob., 22 , pp. 625–636.

[CrossRef]Ahn, Y. J., Hoffmann, C. M., and Rosen, P., 2011, “Length and Energy of Quadratic Bézier Curves and Applications” (submitted).

Bao, F., Sun, Q., Pan, J., and Duan, Q., 2010, “A Blending Interpolator With Value Control and Minimal Strain Energy,” Comput. Graphics, 34 , pp. 119–124.

[CrossRef]Ginkel, I., and Umlauf, G., 2008, “Local Energy-Optimizing Subdivision Algorithms,” Comput. Aided Geom. Des., 25 , pp. 137–147.

[CrossRef]Xu, Y., Joneja, A., and Tang, K., 2009, “Surface Deformation Under Area Constraints,” Comput. Aided Geom. Des., 6 , pp. 711–719.

Kortenkamp, U., and Richter-Gebert, J., 2010, "*The Interactive Geometry Software Cinderella.2*", Springer-Verlag, Berlin.

Freixas, M., Joan-Arinyo, R., and Soto-Riera, A., 2008, “A Constraint-Based Dynamic Geometry System,” ACM Solid and Physical Modeling, pp. 37–46.

Cao, C., Zhang, B., Wang, L., and Li, W., 2006, “The Parametric Design Based on Organizational Evolutionary Algorithm,” "*in PRICAI 2006 – 9th Pacific Rim International Conference on Artificial Intelligence*", pp. 940–944, Springer Lect. Notes in AI 4099.

Yuan, H., Li, W., Yi, R., and Zhao, K., 2006, “The TPSO Algorithm to Solve Geometric Constraint Problems,” Comput. Inform. Syst., 2 , pp. 1311–1316.

Gao, X.-Y., Sun, L.-Q., and Sun, D.-S., 2009, “Artificial Immune-Chaos Hybrid Algorithm for Geometric Constraint Solving,” Inf. Technol. J., pp. 360–365.

[CrossRef]Fudos, I., 1995, “Constraint Solving for Computer Aided Design,” PhD thesis, Purdue University, Department of Computer Sciences.

Fudos, I., and Hoffmann, C. M., 1996, “Correctness Proof of a Geometric Constraint Solver,” Int. J. Comput. Geom. Appl., 6 , pp. 405–420.

[CrossRef]Hoffmann, C. M., and Peters, J., 1995, “Geometric Constraints for CAGD,” "*Mathematical Methods for Curves and Surfaces*", M.Daehlen, T.Lyche, and L.Schumaker, eds., Vanderbilt University Press, 1995, pp. 237–254.

Fudos, I., and Hoffmann, C. M., 1996, “Constraint-Based Parametric Conics for CAD,” Comput.-Aided Des., 28 91–100.

[CrossRef]Fudos, I., and Hoffmann, C. M., 1997, “A Graph-Constructive Approach to Solving Systems of Geometric Constraints,” ACM Trans. Graphics, 16 , pp.
179–215.

[CrossRef]Hoffmann, C. M., and Joan-Arinyo, R., 1997, “Symbolic Constraints in Constructive Geometric Constraint Solving,” J. Symb. Comput., 23 , pp. 287–300.

[CrossRef]Hoffmann, C. M., and Vermeer, P. J., 1994, “Geometric Constraint Solving in *R2 * and *R3 *,” "*Computing in Euclidean Geometry*", 2nd ed., D.Z.Du and F.Hwang, eds., World Scientific Publishing, Singapore, pp. 266–298.

Hoffmann, C. M., and Vermeer, P. J., 1995, “A Spatial Constraint Problem,” "*Computational Kinematics*", J.-P.Merlet and B.Ravani, eds., Kluwer Acad. Publ., pp. 83–92.

Durand, C., and Hoffmann, C. M., 1999, “Variational Constraints in 3D,” in "*Proceedings of International Conference on Shape Modeling and Applications*", pp. 90–97.

Durand, C., and Hoffmann, C. M., 2000, “A Systematic Framework for Solving Geometric Constraints Analytically,” J. Symb. Comput., 30 , pp. 493–520.

[CrossRef]Hoffmann, C. M., and Yuan, B., 2000, “On Spatial Constraint Solving Approaches,” "*Proceedings of ADG*"2000, ETH Zurich, in press.

Hoffmann, C. M., Lomonosov, A., and Sitharam, M., 1997, “Finding Solvable Subsets of Constraint Graphs,” "*Principles and Practice of Constraint Programming – CP97*", Springer LNCS 1330, NY, pp. 463–477.

Hoffmann, C. M., Lomonosov, A., and Sitharam, M., 1998, “Geometric Constraint Decomposition,” "*Geometric Constraint Solving and Applications*", B.Bruderlin and D.Roller, eds., pp. 170–195.

Hoffmann, C. M., Lomonosov, A., and Sitharam, M., 2001, “Decomposition Plans for Geometric Constraint Problems, Part I: Performance Measures for CAD,” J. Symb. Comput., 31 , pp. 367–408.

[CrossRef]Hoffmann, C. M., Lomonosov, A., and Sitharam, M., 2001, “Decomposition Plans for Geometric Constraint Problems, Part II: New Algorithms,” J. Symb. Comput., 31 , pp. 409–428.

[CrossRef]Joan-Arinyo, R., and Soto-Riera, A., 1999, “Combining Constructive and Equational Geometric Constraint Solving Techniques,” ACM Trans. Graphics, 18 , pp. 35–55.

[CrossRef]Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vilaplana, J., 2001, “On the Domain of Constructive Geometric Constraint Solving Techniques,” "*IEEE Spring Conference on Computer Graphics*", R.Duricovic and S.Czanner, eds., Budmerice, Slovakia, pp. 49–54.

Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vilaplana, J., 2002, “Declarative Characterization of a General Architecture for Constructive Geometric Constraint Solvers,” "*The Fifth International Conference on Computer Graphics and Artificial Intelligence*", D.Plemenos, ed., Limoges, France, pp. 63–76.

Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vilaplana, J., 2004, “Revisiting Decomposition Analysis of Geometric Constraint Graphs,” Comput.-Aided Des., 36 , pp. 123–140.

[CrossRef]Jermann, C., Trombettoni, G., Neveu, B., and Mathis, P., 2006, “Decomposition of Geometric Constraints Systems: A Survey,” Int. J. Comput. Geom. Appl., 23 , pp. 1–35.

Gao, X.-S., Hoffmann, C. M., and Yang, W., 2002, “Solving Spatial Basic Geometric Constraint Configurations With Locus Intersection. Solid Modeling ’02, pp. 95–104.

Gao, X.-S., Hoffmann, C. M., and Yang, W., 2004, “Solving Spatial Basic Geometric Constraint Configurations With Locus Intersection,” Comput.-Aided Des., 36 , pp. 111–122.

[CrossRef]Sitharam, M., and Zhou, Y., 2004, “A Tractable, Approximate Characterization of Combinatorial Rigidity in 3D,” in 5th Automated Deduction in Geometry.

Gao, H., and Sitharam, M., 2008, “Characterizing 1-dof Henneberg Graphs With Efficient Configuration Spaces,” arXiv:0810.1997v2.

Mathis, P., and Thierry, S., 2010, “A Formalization of Geometric Constraint Systems and Their Decomposition,” Formal Aspects of Computing, 22 , pp.
129–151.

[CrossRef]van der Meiden, H., 2008, “Semantics of Families of Objects,” PhD thesis, Delft University of Technology, Netherlands.

van der Meiden, H., and Bronsvoort, W., 2010, “A Non-Rigid Cluster Rewriting Approach to Solve Systems of 3D Geometric Constraints,” Comput.-Aided Des., 42 , pp. 36–49.

[CrossRef]Hoffmann, C. M., Sitharam, M., and Yuan, B., 2004, “Making Constraint Solvers Useable: Overconstraints, Comput.-Aided Des., 36 , pp. 377–399.

[CrossRef]Joan-Arinyo, R., Soto-Riera, A., and Vilaplana-Pastó, M., 2003, “Transforming an Underconstrained Geometric Constraint Problem into a Well-Constrained One,” Symposium on Solid Modeling and appl., pp. 33–44.

Jermann, C., and Hosobe, H., 2008, “A Constraint Hierarchies Approach to Geometric Constraint Sketches,” 23rd SAC ’08, pp. 1843–1844.

Chiang, C.-S., and Hoffmann, C. M., 2001, “Variable-Radius Circles in Cluster Merging, Part I: Translational Clusters,” Comput.-Aided Des., 34 , pp. 787–797.

Chiang, C.-S., and Hoffmann, C. M., 2001, “Variable-Radius Circles in Cluster Merging, Part II: Rotational Clusters,” Comput.-Aided Des., 34 , pp. 799–805.

Chiang, C.-S., and Joan-Arinyo, R., 2004, “Revisiting Variable-Radius Circles in Constructive Geometric Constraint Solving,” CAGD, 221 , pp. 371–399.

Hoffmann, C. M., Chiang, C.-S., and Rosen. P., 2010, “Hardware Assist for Constrained Circle Constructions I,” Comput.-Aided Des. Appl, 7 , pp. 17–33.

[CrossRef]Hoffmann, C. M., Chiang, C.-S., and Rosen, P., 2010, “Hardware Assist for Constrained Circle Constructions II,” Comput.-Aided Des. Appl, 7 , pp. 33–44.

[CrossRef]Chiang, C.-S., Hoffmann, C. M., and Rosen. P., “A Generalized Malfatti Problem. Computational Geometry Theory and Applications (in press).

Hoffmann, C. M., and Kim, K.-J., 2001, “Towards Valid Parametric CAD models,” Comput.-Aided Des., 33 , pp. 81–90.

[CrossRef]van der Meiden, H., and Bronsvoort, W., 2006, “A Constructive Approach to Calculate Parameter Ranges for Systems of Geometric Constraints,” Comput.-Aided Des., 38 , pp. 275–283.

[CrossRef]Joan-Arinyo, R., and Mata, N., 2001, “Applying Constructive Geometric Constraint Solvers to Geometric Problems With Interval Parameters,” Nonlinear Anal. Theory, Methods Appl., 47 , pp. 213–224.

[CrossRef]Mekhnacha, K., Mazer, E., and Bessiere, P., 2001, “The Design and Implementation of a Bayesian CAD Modeler for Robotic Applications,” Adv. Rob., 15 , pp. 45–69.

[CrossRef]Sitharam, M., Arbree, A., Zhou, Y., and Kohareswaran, N., 2006, “Solution Management and Navigation for 3d Geometric Constraint Systems,” ACM TOG, 25 , pp. 194–213.

Bettig, B., and Shah, J., 2003, “Solution Selectors: A User-Oriented Answer to the Multiple Solution Problem in Constraint Solving,” ASME J. Mech. Des., 125 , pp. 443–451.

[CrossRef]
Kale, V., Bettig, B., and Bapat, V., 2008, “Geometric Constraint Solving With Solution Selectors,” In "*Proceedings of the ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference*", DETC2008.

Gao, X.-S., Jiang, K., and Zhu. C.-C., 2002, “Geometric Constraint Solving With Conics and Linkages,” Comput.-Aided Des., 34 , pp. 421–433.

[CrossRef]Cheteut, V., Daniel, M., Hahmann, S., LaGreca, R., Lon, J., Maculet, R., and Sauvage, B., 2007, “Constraint Modeling for Curves and Surfaces in CAGD,” Intl. J. Shape Model., 13 , pp. 159–199.

[CrossRef]Ahn, Y.-J., and Hoffmann, C. M., 2010, “Constraint-Based ln-Curves,” SAC, pp. 1242–1246.

Hanniel, I., and Haller, K., 2009, “Solving Global Geometric Constraints on Free-Form Curves,” In ACM Symposium Solid and Physics Modeling, pp. 307–312.

Michelucci, D., 2004, “Using Cayley Menger determinants,” In "*Proceedings of the 2004 ACM Symposium on Solid Modeling*", pp. 285–290.

Sitharam, M., Oung, J., Arbree, A., and Zhou, Y., 2006, “Mixing Features and Variational Constraints in 3d,” Comput.-Aided Des., 38.

Foufou, S., Michelucci, D., and Jurzak, J.-P., 2005, “Numerical Decomposition of Geometric Constraints,” "*Symposium of Solid Modeling and Applications*", pp. 143–151.

MichelucciD. and Foufou, S., 2006, Geometric Constraint Solving: The Witness Configuration Method, Comput.-Aided Des., 38 , pp. 284–299.

[CrossRef]Michelucci, D., and Foufou, S., 2009, “Interrogating Witnesses for Geometric Constraint Solving,” SIAM/ACM Joint Conference Geometry Physics Modeling, pp. 343–348.

Shi, Z., and ChenL., 2006, “Simplified Iterative Algorithm to Solve Geometric Constraints,” J. Comput.-Aid. Design Comput. Graphics, 18 , pp. 787–792 (in Chinese).