Reissner, E., 1985, “Reflections on the Theory of Elastic Plates,” Appl. Mech. Rev., 38 , pp. 1453–1464.
[CrossRef]Jemielita, G., 1990, “On Kinematical Assumptions of Refined Theories of Plates: A Survey,” Trans. ASME, J. Appl. Mech., 57 , pp. 1088–1091.
[CrossRef]Wang, C. M., Reddy, J. N., and Lee, K. H., 2000, "Shear Deformable Beams and Plates: Relationship to Classical Solutions", Elsevier Science, London.
Yang, H. T. Y., Saigal, S., Masud, A., and Kapania, R. K., 2000, “A Survey of Recent Shell Finite Element,” Int. J. Numer. Methods Eng., 47 (1–3), pp. 101–127.
[CrossRef]Timoshenko, S., and Krieger, S. W., 1959, "Theory of Plates and Shells", 2nd ed., McGraw-Hill, New York.
Bischoff, M., Wall, W. A., Beltzinger, K. U., and Ramm, E., 2004, “Models and Finite Elements for Thin-Walled Structures,” "Encyclopedia of Computational Mechanics, Volume 2: Solids and Structures", E.Stein, R.Borst, and J.R.Hughes, eds., Wiley, New York, Vol. 2 , Chap. 3.
Hauptmann, R., and Schweizerhof, K., 1998, “A Systematic Development of ‘Solid-Shell’ Element Formulations for Linear and Non-Linear Analyses Employing Only Displacement Degrees of Freedom,” Int. J. Numer. Methods Eng., 42 , pp. 49–69.
[CrossRef]Hauptmann, R., Schweizerhof, K., and Doll, S., 2000, “Extension of the ‘Solid-Shell’ Concept for Application to Large Elastic and Large Elastoplastic Deformations,” Int. J. Numer. Methods Eng., 49 , pp. 1121–1141.
[CrossRef]Hauptmann, R., Doll, S., Harnau, M., and Schweizerhof, K., 2001, “‘Solid-Shell’ Elements With Linear and Quadratic Shape Functions at Large Deformations With Nearly Incompressible Materials,” Comput. Struct., 79 , pp. 1671–1685.
[CrossRef]Sze, K. Y., and Yao, L. Q., 2000, “A Hybrid Stress ANS Solid-Shell Element and Its Generalization for Smart Structure Modelling. Part I—Solid-Shell Element Formulation,” Int. J. Numer. Methods Eng., 48 , pp. 545–564.
[CrossRef]Braess, D., and Kaltenbacher, M., 2008, “Efficient 3D-Finite Element Formulation for Thin Mechanical and Piezoelectric Structures,” Int. J. Numer. Methods Eng., 73 , pp. 147–161.
[CrossRef]Dorfmann, A., and Nelson, R. B., 1995, “Three-Dimensional Finite Element for Analysing Thin Plate/Shell Structures,” Int. J. Numer. Methods Eng., 38 (20), pp. 3453–3482.
[CrossRef]Cook, R. D., Malkus, D. S., and Plesha, M. E., 1989, "Concepts and Applications of Finite Element Analysis", Wiley, New York.
Zienkiewicz, O. C., and Taylor, R. L., 2005, "The Finite Element Method for Solid and Structural Mechanics", 6th ed., Elsevier (Butterworth-Heinemann), Oxford, UK.
Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z., 2005, "The Finite Element Method: Its Basis and Fundamentals", 6th ed., Elsevier (Butterworth-Heinemann), Oxford, UK.
Duan, M., Miyamoto, Y., Iwasaki, S., and Deta, H., 1999, “5-Node Hybrid/Mixed Finite Element for Reissner–Mindlin Plate,” Finite Elem. Anal. Design, 33 , pp. 167–185.
[CrossRef]Jog, C. S., 2005, “A 27-Node Hybrid Brick and a 21-Node Hybrid Wedge Element for Structural Analysis,” Finite Elem. Anal. Design, 41 (11–12), pp. 1209–1232.
[CrossRef]Jirousek, J., Wróblewski, A., Qin, Q. H., and He, X. Q., 1995, “A Family of Quadrilateral Hybrid-Trefftz p-Elements for Thick Plate Analysis,” Comput. Methods Appl. Mech. Eng., 127 , pp. 315–344.
[CrossRef]Düster, A., Bröker, H., and Rank, E., 2001, “The p-Version of Finite Element Method for Three-Dimensional Curved Thin Walled Structures,” Int. J. Numer. Methods Eng., 52 (7), pp. 673–703.
[CrossRef]Jorabchi, K., and Suresh, K., 2009, “Nonlinear Algebraic Reduction for Snap-Fit Simulation,” ASME J. Mech. Des., 131 (6), p. 061004.
[CrossRef]Jorabchi, K., Danczyk, J., and Suresh, K., 2009, “Efficient and Automated Analysis of Potentially Slender Structures,” ASME J. Comput. Inf. Sci. Eng., 9 (4), p. 041001.
[CrossRef]Mishra, V., and Suresh, K., 2009, “Efficient Analysis of 3-D Plates via Algebraic Reduction,” Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference , San Diego, CA.
Shames, I. H., and Dym, C. L., 1985, "Energy and Finite Element Methods in Structural Mechanics", Hemisphere, New York.
Dow, J., and Byrd, D. E., 1988, “The Identification and Elimination of Artificial Stiffening Errors in Finite Elements,” Int. J. Numer. Methods Eng., 26 (3), pp. 743–762.
[CrossRef]Yuqiu, L., Xiaoming, B., Zhifei, L., and Yin, X., 1995, “Generalized Conforming Plate Bending Elements Using Point and Line Compatibility Conditions,” Comput. Struct., 54 (4), pp. 717–723.
[CrossRef]Tautges, T. J., 2001, “The Generation of Hexahedral Meshes for Assembly Geometry: Survey and Progress,” Int. J. Numer. Methods Eng., 50 , pp. 2617–2642.
[CrossRef]Mishra, V., and Suresh, K., 2009, “A Dual-Representation Strategy for the Virtual Assembly of Thin Deformable Objects,” Virtual Reality, in press.
[CrossRef]Taylor, R. L., and Govindjee, S., 2004, “Solution of Clamped Rectangular Plate Problems,” Commun. Numer. Methods Eng., 20 , pp. 757–765.
[CrossRef]Blevins, R. D., 1995, "Formulas for Natural Frequency and Mode Shape", Krieger, Malabar, FL.