Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P., 1996, “Meshless Methods: An Overview and Recent Developments,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 139 , pp. 3–47.

Nayroles, B., Touzat, G., and Villon, P., 1992, “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,” Comput. Mech.

[CrossRef], 10 , pp. 307–318.

Belytschko, T., Lu, Y. Y., and Gu, L., 1994, “Element Free Galerkin Methods,” Int. J. Numer. Methods Eng.

[CrossRef], 37 , pp. 229–256.

Atluri, S. N., and Zhu, T. L., 2000, “The Meshless Local Petrov-Galerkin (MLPG) Approach for Solving Problems in Elasto-Statics,” Arch. Technol., 25 , pp. 169–179.

Liu, G. R., and Gu, Y. T., 2001, “A Point Interpolation Method for Two-Dimensional Solids,” Int. J. Numer. Methods Eng.

[CrossRef], 50 , pp. 937–951.

Melenk, J. M., and Babuska, I., 1996, “The Partition of Unity Finite Element Method: Basic Theory and Applications,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 139 , pp. 289–314.

De, S., and Bathe, K. J., 2000, “Method of Finite Spheres,” Comput. Mech.

[CrossRef], 25 , pp. 329–345.

De, S., and Bathe, K. J., 2001, “The Method of Finite Spheres with Improved Numerical Integration,” Comput. Struct.

[CrossRef], 79 , pp. 2183–2196.

Sukumar, N., Moran, B., and Belytschko, T., 1998, “The Natural Element Method in Solid Mechanics,” Int. J. Numer. Methods Eng.

[CrossRef], 43 , pp. 839–887.

Dolbow, J., and Belytschko, T., 1999, “Numerical Integration of the Galerkin Weak Form in Meshfree Methods,” Comput. Mech., 23 , pp. 219–230.

Gonzalez, D., Cueto, E., Martinez, M. A., and Doblare, M., 2004, “Numerical integration in Natural Neighbour Galerkin methods,” Int. J. Numer. Methods Eng., 60 , pp. 2077–2104.

Laguardia, J. J., Cueto, E., and Doblare, M., 2005, “A Natural Neighbour Galerkin Method with Quadtree Structure,” Int. J. Numer. Methods Eng., 63 , pp. 789–812.

Krongauz, Y., and Belytschko, T., 1996, “Enforcement of Essential Boundary Conditions in Meshless Approximations Using Finite Elements,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 131 , pp. 133–145.

Kumar, A. V., and Lee, J. H., 2006, “Step Function Representation of Solid Models and Application to Mesh Free Engineering Analysis,” ASME J. Mech. Des.

[CrossRef], 128 (1), pp. 46–56.

Kantorovich, L. W., and Krylov, W. I., 1956, “Näherungsmethoden der Höheren Analysis,” VEB Deutscher Verlag der Wissenschaften, Berlin.

Shapiro, V., and Tsukanov, I., 1999, “Meshfree Simulation of Deforming Domains,” Comput.-Aided Des.

[CrossRef], 31 , pp. 459–471.

Rvachev, V. L., and Shieko, T. I., 1995, “R-functions in Boundary Value Problems in Mechanics,” Appl. Mech. Rev., 48 , pp. 151–188.

Belytschko, T., Parimi, C., Moes, N., Sukumar, N., and Usui, S., 2003, “Structured Extended Finite Element Methods for Solids Defined by Implicit Surfaces,” Int. J. Numer. Methods Eng.

[CrossRef], 56 , pp. 609–635.

Clark, B. W., and Anderson, D. C., 2002, “Finite Element Analysis in 3D Using Penalty Boundary Method,” "*Proceedings of Design Engineering Technical Conferences*", Montreal, Canada.

Osher, S., and Fedkiw, R., 2002, "*Level Set Methods and Dynamic Implicit Surfaces*", Springer, New York.

Mortenson, M. E., 1997, "*Geometric Modeling*", Wiley, New York.

Rvachev, V. L., Sheiko, T. I., Shapiro, V., and Tsukanov, I., 2001, “Transfinite Interpolation Over Implicitly Defined Sets,” Comput. Aided Geom. Des., 18 , pp. 195–220.

Timoshenko, S. P., and Goodier, J. N., 1969, "*Theory of Elasticity*", 3rd ed., McGraw-Hill, New York.

Gu, Y. T., and Liu, G. R., 2001, “A Local Point Interpretation Method for Static and Dynamic Analysis of Thin Beams,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 190 , pp. 515–552.