Surface and Volume Discretization of Functionally Based Heterogeneous Objects

[+] Author and Article Information
Elena Kartasheva

Institute for Mathematical Modeling, Russian Academy of Science, Moscow, Russiae-mail: ekart@imamod.ru

Valery Adzhiev

The National Centre for Computer Animation, Bournemouth University, Poole, BH12 5BB UKe-mail: vadzhiev@bournemouth.ac.uk

Alexander Pasko

Hosei University, Tokyo, Japane-mail: pasko@k.hosei.ac.jp

Oleg Fryazinov, Vladimir Gasilov

Institute for Mathematical Modeling, Russian Academy of Science, Moscow, Russia

J. Comput. Inf. Sci. Eng 3(4), 285-294 (Dec 24, 2003) (10 pages) doi:10.1115/1.1630817 History: Received July 01, 2003; Revised October 01, 2003; Online December 24, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Pasko,  A., Adzhiev,  V., Schmitt,  B., and Schlick,  C., 2001, “Constructive Hypervolume Modelling,” Graphical Models, a special issue on Volume Modeling, 63(6), pp. 413–442.
Adzhiev, V., Kartasheva, E., Kunii, T., Pasko, A., and Schmitt, B., 2002, “Cellular-functional Modeling of Heterogeneous Objects,” Proc. 7th ACM Symposium on Solid Modeling and Applications, Kunwoo Lee, and N. Patrikalakis, eds., Saarbrucken, Germany, ACM Press, pp. 192–203.
Biswas, A., Shapiro, V., and Tsukanov, I., 2002, “Heterogeneous Material Modeling with Distance Fields,” Technical Report SAL 2002-4, University of Wisconsin-Madison, USA.
Shapiro,  V., and Tsukanov,  I., 1999, “Meshfree Simulation of Deforming Domains,” Comput.-Aided Des., 31(7), pp. 459–471.
Frey, P. J., and George, P.-L., 2000, Mesh Generation: Application to Finite Elements, HERMES Science Europe, OXFORD & PARIS, p. 814.
Adzhiev,  V., Kartasheva,  E., Kunii,  T., Pasko,  A., and Schmitt,  B., 2002, “Hybrid Cellular-functional Modeling of Heterogeneous Objects,” J. Comput. Inf. Sci. Eng., 2(4), pp. 192–203.
Pasko,  A., Adzhiev,  V., Sourin,  A., and Savchenko,  V., 1995, “Function Representation in Geometric Modelling: Concepts, Implementation and Applications,” Visual Comput., 11(8), pp. 429–446.
Lohner,  R., 1997, “Automatic Unstructured Grid Generators,” Finite Elem. Anal. Design , 25, pp. 114–134.
Kumar, V., and Dutta, D., 1997, “An Approach to Modeling Multi-material Objects,” Proc. 4th Symposium on Solid Modeling and Applications, ACM SIGGRAPH, Atlanta, pp. 336–345.
Kumar,  V., Burns,  D., Dutta,  D., and Hoffmann,  C., 1999, “A Framework for Object Modeling,” Comput.-Aided Des., 31(9), pp. 41–556.
Shin,  K., and Dutta,  D., 2001, “Constructive Representation of Heterogeneous Objects,” J. Comput. Inf. Sci. Eng., 1(3), pp. 205–217.
Chen,  M., and Tucker,  J., 2000, “Constructive Volume Geometry,” Computer Graphics Forum, 19(4), pp. 281–293.
Jackson,  T. R., Liu,  H., Patrikalakis,  N. M., Sachs,  E. M., and Cima,  M. J., 1999, “Modeling and Designing Functionally Graded Material Components for Fabrication with Local Composition Control,” Mater. Des., 20(2/3), pp. 63–75.
Martin, W., and Cohen, E., 2001, “Representation and Extraction of Volumetric Attributes Using Trivariate Splines: a Mathematical Framework,” Proc. 6th ACM Symposium on Solid Modeling and Applications, D. Anderson, K. Lee, eds., Ann Arbor, ACM Press, pp. 234–240.
Park, S. M., Crawford, R., and Beaman, J., 2001, “Volumetric Multi-texturing for Functionally Gradient Material Representation,” Proc. 6th ACM Symposium on Solid Modeling and Applications, D. Anderson, and K. Lee, eds., Ann Arbor, ACM Press, pp. 216–224.
Wyvill,  G., McPheeters,  C., and Wyvill,  B., 1986, “Data Structure for Soft Objects,” Visual Comput., 2(4), pp. 27–23.
Bloomenthal, J., 1994, “An Implicit Surface Polygonizer,” Graphics Gems IV, P. Heckbert, ed., Academic Press, pp. 324–349.
Hartmann,  E., 1998, “A Marching Method for the Triangulation of Surfaces,” Visual Comput., 14(3), pp. 95–108.
Karkanis,  T., and Stewart,  A. J., 2001, “Curvature-dependent Triangulation of Implicit Surfaces,” IEEE Comput. Graphics Appl., 21(2), pp. 60–69.
Pasko,  A., Pilyugin,  V., and Pokrovskiy,  V., 1986, “Geometric Modeling in the Analysis of Trivariate Functions,” Communications of Joint Institute of Nuclear Research, P10-86-310, Dubna, USSR (in Russian). English translation: 1988, Comput. Graphics, 12(3/4), pp. 457–465.
Lorensen,  W., and Cline,  H., 1987, “Marching Cubes: a High Resolution 3D Surface Construction Algorithm,” Comput. Graph., 21(4), pp. 163–169.
Nielson, G., and Hamann, B., 1991, “The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes,” Proc. Visualization ’91, IEEE Computer Society Press, pp. 29–38.
Schmidt,  M., 1993, “Cutting Cubes-Visualizing Implicit Surfaces by Adaptive Polygonization,” Visual Comput., 10(2), pp. 101–115.
Kobbelt, L., Botsch, M., Schwanecke, U., and Seidel, H.-P., 2001, “Feature Sensitive Surface Extraction from Volume Data,” Proc. SIGGRAPH 2001, pp. 57–66.
Ohtake, Y., Belyaev, A., and Pasko, A., 2001, “Dynamic Meshes for Accurate Polygonization of Implicit Surfaces with Sharp Features,” Shape Modeling International 2001, IEEE Computer Society, pp. 74–81.
Ohtake Y., and Belyaev A., 2002, “Dual/primal Mesh Optimization for Polygonized Implicit Surfaces,” Proc. 7th ACM Symposium on Solid Modeling and Applications, K. Lee and N. Patrikalakis, eds., ACM Press, Saarbrucken, pp. 171–178.
Frey,  P. J., and Borouchaki,  H., 1998, “Geometric Surface Mesh Optimization,” Computing and Visualization in Science, 1(3), pp. 113–121.
Kobbelt, L., 2000, “(√3)-Subdivision,” Proc. SIGGRAPH 2000, pp. 103–112.
Garland M., and Heckbert, P. S., 1997, “Surface Simplification Using Error Metrics,” Proc. SIGGRAPH 2001, pp. 209–216.
Sheffer,  A., 2001, “Model Simplification for Meshing Using Face Clustering,” Comput.-Aided Des., 33(13), pp. 925–934.
Owen, S. J., 1998, “A Survey of Unstructured Mesh Generation Technology,” Proc. 7th International Meshing Roundtable, Dearborn, MI.
Sethian, J., A., 1999, Level Set Methods and Fast Marching Methods, Cambridge University Press.
Frank,  K., and Lang,  U., 2000, “Gradient and Curvature Approximation in Data-dependent Surface Simplification,” Computing and Visualization in Science, 2(4), pp. 221–228.
Freitag,  L., and Ollivier-Gooch,  C., 1997, “Tetrahedral Mesh Improvement Using Swapping and Smoothing,” Int. J. Numer. Methods Eng., 40, pp. 3937–4002.
Rivara,  M., and Levin,  C., 1992, “A 3D Refinement Algorithm Suitable for Adaptive and Multi-grid Techniques,” J. Comput. Appl. Math., 8, pp. 281–290.
Liu,  A., and Joe,  B., 1994, “On the Shape of Tetrahedra from Bisection,” Math. Comput., 63, pp. 141–154.
Liu,  A., and Joe,  B., 1995, “Quality Local Refinement of Tetrahedral Meshes Based on Bisection,” SIAM J. Sci. Comput. (USA), 16, pp. 1269–1291.


Grahic Jump Location
Modified advancing front method: a) the initial rectangular object with the pattern mesh subdivided according to a mesh density attribute; b) the sub-mesh lying completely inside the subdivided object c) the final mesh
Grahic Jump Location
An example of discretization of a functionally based object with sharp features: a) polygonization of the initial object surface; b) a surface mesh after sharp features reconstruction; c) the optimal surface mesh; d) the final tetrahedral tessellation
Grahic Jump Location
An example of discretization of a complex FRep object: a) surface mesh with reconstructed sharp features (5992 triangles); b) surface mesh after FE adaptation (7794 triangles); c) cut of tetrahedral mesh (enlarged view) (43059 tetrahedra)
Grahic Jump Location
An influence of attributes on the mesh elements’ sizes: a) surface mesh with reconstructed sharp features (2776 triangles); b) the minimal surface triangulation (12 triangles); c-e) mesh adaptation to attributes of various types (2052, 7012, 6152 triangles, respectively)
Grahic Jump Location
Modeling of an impeller: a) impeller consisting of various materials; b) surface mesh with reconstructed sharp features (846 triangles); c) surface mesh after FE adaptation (2828 triangles); d) enlarged fragment of a surface mesh conforming the material attribute




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In